Bulk Heterojunction Antimony Selenosulfide Thin‐Film Solar Cells with Efficient Charge Extraction and Suppressed Recombination
As an emerging earth‐abundant light harvesting material, antimony selenosulfide (Sb2(S,Se)3) has received tremendous attention for photovoltaics. Manipulating the carrier separation and recombination processes is critical to achieve high device efficiency. Compared to the conventional planar heteroj...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2024-02, Vol.34 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 34 |
creator | Zhou, Ru Li, Xiaozhang Wan, Lei Niu, Haihong Wang, Huan Yang, Xi Wang, Xingzhu Hou, Jiwei Xu, Jinzhang Xu, Baomin |
description | As an emerging earth‐abundant light harvesting material, antimony selenosulfide (Sb2(S,Se)3) has received tremendous attention for photovoltaics. Manipulating the carrier separation and recombination processes is critical to achieve high device efficiency. Compared to the conventional planar heterojunction (PHJ), the bulk heterojunction (BHJ) configuration affords great potential to enable efficient charge extraction. In this work, BHJ Sb2(S,Se)3 solar cells are constructed based on CdS nanorod arrays (NRAs). Highly ordered CdS NRAs with appropriate nanorod lengths and diameters are obtained by regulating the growth environment and screening different substrates for CdS deposition. A low‐temperature oxygen doping strategy implemented on CdS NRAs is further developed to improve the optoelectronic and defect properties as well as form a favorable cascade band structure for CdS NRAs, so as to realize more efficient charge extraction and suppressed recombination at the heterointerface. As a result, the CdS NRAs‐based superstrated BHJ Sb2(S,Se)3 solar cell yields a considerable power conversion efficiency of 8.04%, outperforming that of the PHJ device. A careful comparative study of PHJ and BHJ based on electrostatic field simulations indicates that the BHJ allows more efficient charge extraction and transport. This work highlights the great potential of BHJ configuration for constructing high‐performance antimony chalcogenide solar cells.
Bulk heterojunction antimony chalcogenide solar cells are constructed by integrating Sb2(S,Se)3 absorbers with highly ordered CdS nanorod arrays. An effective oxygen doping strategy is further implemented onto CdS nanorods through a low‐temperature annealing treatment to construct a graded build‐in potential at the CdS/Sb2(S,Se)3 heterointerface. The efficient charge extraction and suppressed recombination enable Sb2(S,Se)3 solar cells with a considerable 8.04% efficiency. |
doi_str_mv | 10.1002/adfm.202308021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922283268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922283268</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3571-345c979bbb565f3b0780f1ce80ca3877fc7924e682acdb50b3e933f4e50d7593</originalsourceid><addsrcrecordid>eNqFkM1OwkAURhujiYhuXU_iGpyfttMuEUFMMCbCwl0znd6RwekMzrRBdjyCz-iTCMHg0tW9yT3fd5MTRdcE9wnG9FZUqu5TTBnOMCUnUYekJO0xTLPT405ez6OLEJYYE85Z3Im2d615RxNowLtla2WjnUUD2-ja2Q2agQHrQmuUrgDNF9p-b7_G2tRo5ozwaAjGBLTWzQKNlNJSg23QcCH8G6DRZ-PFoU_YCs3a1cpDCFChF5CuLrUV--NldKaECXD1O7vRfDyaDye96fPD43Aw7UmWcNJjcSJznpdlmaSJYiXmGVZEQoalYBnnSvKcxpBmVMiqTHDJIGdMxZDgiic560Y3h9qVdx8thKZYutbb3ceC5pTSjNE021H9AyW9C8GDKlZe18JvCoKLveRiL7k4St4F8kNgrQ1s_qGLwf346S_7A8TKg58</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922283268</pqid></control><display><type>article</type><title>Bulk Heterojunction Antimony Selenosulfide Thin‐Film Solar Cells with Efficient Charge Extraction and Suppressed Recombination</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Ru ; Li, Xiaozhang ; Wan, Lei ; Niu, Haihong ; Wang, Huan ; Yang, Xi ; Wang, Xingzhu ; Hou, Jiwei ; Xu, Jinzhang ; Xu, Baomin</creator><creatorcontrib>Zhou, Ru ; Li, Xiaozhang ; Wan, Lei ; Niu, Haihong ; Wang, Huan ; Yang, Xi ; Wang, Xingzhu ; Hou, Jiwei ; Xu, Jinzhang ; Xu, Baomin</creatorcontrib><description>As an emerging earth‐abundant light harvesting material, antimony selenosulfide (Sb2(S,Se)3) has received tremendous attention for photovoltaics. Manipulating the carrier separation and recombination processes is critical to achieve high device efficiency. Compared to the conventional planar heterojunction (PHJ), the bulk heterojunction (BHJ) configuration affords great potential to enable efficient charge extraction. In this work, BHJ Sb2(S,Se)3 solar cells are constructed based on CdS nanorod arrays (NRAs). Highly ordered CdS NRAs with appropriate nanorod lengths and diameters are obtained by regulating the growth environment and screening different substrates for CdS deposition. A low‐temperature oxygen doping strategy implemented on CdS NRAs is further developed to improve the optoelectronic and defect properties as well as form a favorable cascade band structure for CdS NRAs, so as to realize more efficient charge extraction and suppressed recombination at the heterointerface. As a result, the CdS NRAs‐based superstrated BHJ Sb2(S,Se)3 solar cell yields a considerable power conversion efficiency of 8.04%, outperforming that of the PHJ device. A careful comparative study of PHJ and BHJ based on electrostatic field simulations indicates that the BHJ allows more efficient charge extraction and transport. This work highlights the great potential of BHJ configuration for constructing high‐performance antimony chalcogenide solar cells.
Bulk heterojunction antimony chalcogenide solar cells are constructed by integrating Sb2(S,Se)3 absorbers with highly ordered CdS nanorod arrays. An effective oxygen doping strategy is further implemented onto CdS nanorods through a low‐temperature annealing treatment to construct a graded build‐in potential at the CdS/Sb2(S,Se)3 heterointerface. The efficient charge extraction and suppressed recombination enable Sb2(S,Se)3 solar cells with a considerable 8.04% efficiency.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202308021</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Antimony ; bulk heterojunction ; Carrier recombination ; CdS nanorod arrays ; Comparative studies ; Configuration management ; Electric fields ; Energy conversion efficiency ; Heterojunctions ; Nanorods ; Optoelectronics ; O‐doping strategy ; Photovoltaic cells ; Sb2(S ; Se)3 ; Solar cells ; Substrates ; Thin films</subject><ispartof>Advanced functional materials, 2024-02, Vol.34 (6), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3571-345c979bbb565f3b0780f1ce80ca3877fc7924e682acdb50b3e933f4e50d7593</citedby><cites>FETCH-LOGICAL-c3571-345c979bbb565f3b0780f1ce80ca3877fc7924e682acdb50b3e933f4e50d7593</cites><orcidid>0000-0002-2868-0613 ; 0000-0002-8010-4875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202308021$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202308021$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhou, Ru</creatorcontrib><creatorcontrib>Li, Xiaozhang</creatorcontrib><creatorcontrib>Wan, Lei</creatorcontrib><creatorcontrib>Niu, Haihong</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Yang, Xi</creatorcontrib><creatorcontrib>Wang, Xingzhu</creatorcontrib><creatorcontrib>Hou, Jiwei</creatorcontrib><creatorcontrib>Xu, Jinzhang</creatorcontrib><creatorcontrib>Xu, Baomin</creatorcontrib><title>Bulk Heterojunction Antimony Selenosulfide Thin‐Film Solar Cells with Efficient Charge Extraction and Suppressed Recombination</title><title>Advanced functional materials</title><description>As an emerging earth‐abundant light harvesting material, antimony selenosulfide (Sb2(S,Se)3) has received tremendous attention for photovoltaics. Manipulating the carrier separation and recombination processes is critical to achieve high device efficiency. Compared to the conventional planar heterojunction (PHJ), the bulk heterojunction (BHJ) configuration affords great potential to enable efficient charge extraction. In this work, BHJ Sb2(S,Se)3 solar cells are constructed based on CdS nanorod arrays (NRAs). Highly ordered CdS NRAs with appropriate nanorod lengths and diameters are obtained by regulating the growth environment and screening different substrates for CdS deposition. A low‐temperature oxygen doping strategy implemented on CdS NRAs is further developed to improve the optoelectronic and defect properties as well as form a favorable cascade band structure for CdS NRAs, so as to realize more efficient charge extraction and suppressed recombination at the heterointerface. As a result, the CdS NRAs‐based superstrated BHJ Sb2(S,Se)3 solar cell yields a considerable power conversion efficiency of 8.04%, outperforming that of the PHJ device. A careful comparative study of PHJ and BHJ based on electrostatic field simulations indicates that the BHJ allows more efficient charge extraction and transport. This work highlights the great potential of BHJ configuration for constructing high‐performance antimony chalcogenide solar cells.
Bulk heterojunction antimony chalcogenide solar cells are constructed by integrating Sb2(S,Se)3 absorbers with highly ordered CdS nanorod arrays. An effective oxygen doping strategy is further implemented onto CdS nanorods through a low‐temperature annealing treatment to construct a graded build‐in potential at the CdS/Sb2(S,Se)3 heterointerface. The efficient charge extraction and suppressed recombination enable Sb2(S,Se)3 solar cells with a considerable 8.04% efficiency.</description><subject>Antimony</subject><subject>bulk heterojunction</subject><subject>Carrier recombination</subject><subject>CdS nanorod arrays</subject><subject>Comparative studies</subject><subject>Configuration management</subject><subject>Electric fields</subject><subject>Energy conversion efficiency</subject><subject>Heterojunctions</subject><subject>Nanorods</subject><subject>Optoelectronics</subject><subject>O‐doping strategy</subject><subject>Photovoltaic cells</subject><subject>Sb2(S</subject><subject>Se)3</subject><subject>Solar cells</subject><subject>Substrates</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwkAURhujiYhuXU_iGpyfttMuEUFMMCbCwl0znd6RwekMzrRBdjyCz-iTCMHg0tW9yT3fd5MTRdcE9wnG9FZUqu5TTBnOMCUnUYekJO0xTLPT405ez6OLEJYYE85Z3Im2d615RxNowLtla2WjnUUD2-ja2Q2agQHrQmuUrgDNF9p-b7_G2tRo5ozwaAjGBLTWzQKNlNJSg23QcCH8G6DRZ-PFoU_YCs3a1cpDCFChF5CuLrUV--NldKaECXD1O7vRfDyaDye96fPD43Aw7UmWcNJjcSJznpdlmaSJYiXmGVZEQoalYBnnSvKcxpBmVMiqTHDJIGdMxZDgiic560Y3h9qVdx8thKZYutbb3ceC5pTSjNE021H9AyW9C8GDKlZe18JvCoKLveRiL7k4St4F8kNgrQ1s_qGLwf346S_7A8TKg58</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Zhou, Ru</creator><creator>Li, Xiaozhang</creator><creator>Wan, Lei</creator><creator>Niu, Haihong</creator><creator>Wang, Huan</creator><creator>Yang, Xi</creator><creator>Wang, Xingzhu</creator><creator>Hou, Jiwei</creator><creator>Xu, Jinzhang</creator><creator>Xu, Baomin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2868-0613</orcidid><orcidid>https://orcid.org/0000-0002-8010-4875</orcidid></search><sort><creationdate>20240201</creationdate><title>Bulk Heterojunction Antimony Selenosulfide Thin‐Film Solar Cells with Efficient Charge Extraction and Suppressed Recombination</title><author>Zhou, Ru ; Li, Xiaozhang ; Wan, Lei ; Niu, Haihong ; Wang, Huan ; Yang, Xi ; Wang, Xingzhu ; Hou, Jiwei ; Xu, Jinzhang ; Xu, Baomin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3571-345c979bbb565f3b0780f1ce80ca3877fc7924e682acdb50b3e933f4e50d7593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antimony</topic><topic>bulk heterojunction</topic><topic>Carrier recombination</topic><topic>CdS nanorod arrays</topic><topic>Comparative studies</topic><topic>Configuration management</topic><topic>Electric fields</topic><topic>Energy conversion efficiency</topic><topic>Heterojunctions</topic><topic>Nanorods</topic><topic>Optoelectronics</topic><topic>O‐doping strategy</topic><topic>Photovoltaic cells</topic><topic>Sb2(S</topic><topic>Se)3</topic><topic>Solar cells</topic><topic>Substrates</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ru</creatorcontrib><creatorcontrib>Li, Xiaozhang</creatorcontrib><creatorcontrib>Wan, Lei</creatorcontrib><creatorcontrib>Niu, Haihong</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Yang, Xi</creatorcontrib><creatorcontrib>Wang, Xingzhu</creatorcontrib><creatorcontrib>Hou, Jiwei</creatorcontrib><creatorcontrib>Xu, Jinzhang</creatorcontrib><creatorcontrib>Xu, Baomin</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Ru</au><au>Li, Xiaozhang</au><au>Wan, Lei</au><au>Niu, Haihong</au><au>Wang, Huan</au><au>Yang, Xi</au><au>Wang, Xingzhu</au><au>Hou, Jiwei</au><au>Xu, Jinzhang</au><au>Xu, Baomin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bulk Heterojunction Antimony Selenosulfide Thin‐Film Solar Cells with Efficient Charge Extraction and Suppressed Recombination</atitle><jtitle>Advanced functional materials</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>34</volume><issue>6</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>As an emerging earth‐abundant light harvesting material, antimony selenosulfide (Sb2(S,Se)3) has received tremendous attention for photovoltaics. Manipulating the carrier separation and recombination processes is critical to achieve high device efficiency. Compared to the conventional planar heterojunction (PHJ), the bulk heterojunction (BHJ) configuration affords great potential to enable efficient charge extraction. In this work, BHJ Sb2(S,Se)3 solar cells are constructed based on CdS nanorod arrays (NRAs). Highly ordered CdS NRAs with appropriate nanorod lengths and diameters are obtained by regulating the growth environment and screening different substrates for CdS deposition. A low‐temperature oxygen doping strategy implemented on CdS NRAs is further developed to improve the optoelectronic and defect properties as well as form a favorable cascade band structure for CdS NRAs, so as to realize more efficient charge extraction and suppressed recombination at the heterointerface. As a result, the CdS NRAs‐based superstrated BHJ Sb2(S,Se)3 solar cell yields a considerable power conversion efficiency of 8.04%, outperforming that of the PHJ device. A careful comparative study of PHJ and BHJ based on electrostatic field simulations indicates that the BHJ allows more efficient charge extraction and transport. This work highlights the great potential of BHJ configuration for constructing high‐performance antimony chalcogenide solar cells.
Bulk heterojunction antimony chalcogenide solar cells are constructed by integrating Sb2(S,Se)3 absorbers with highly ordered CdS nanorod arrays. An effective oxygen doping strategy is further implemented onto CdS nanorods through a low‐temperature annealing treatment to construct a graded build‐in potential at the CdS/Sb2(S,Se)3 heterointerface. The efficient charge extraction and suppressed recombination enable Sb2(S,Se)3 solar cells with a considerable 8.04% efficiency.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202308021</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2868-0613</orcidid><orcidid>https://orcid.org/0000-0002-8010-4875</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2024-02, Vol.34 (6), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2922283268 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Antimony bulk heterojunction Carrier recombination CdS nanorod arrays Comparative studies Configuration management Electric fields Energy conversion efficiency Heterojunctions Nanorods Optoelectronics O‐doping strategy Photovoltaic cells Sb2(S Se)3 Solar cells Substrates Thin films |
title | Bulk Heterojunction Antimony Selenosulfide Thin‐Film Solar Cells with Efficient Charge Extraction and Suppressed Recombination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bulk%20Heterojunction%20Antimony%20Selenosulfide%20Thin%E2%80%90Film%20Solar%20Cells%20with%20Efficient%20Charge%20Extraction%20and%20Suppressed%20Recombination&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhou,%20Ru&rft.date=2024-02-01&rft.volume=34&rft.issue=6&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202308021&rft_dat=%3Cproquest_cross%3E2922283268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922283268&rft_id=info:pmid/&rfr_iscdi=true |