The shape memory effect and minimal surfaces

Martensitic transformations, viewed as continuous transformations between triply periodic minimal surfaces (TPMS), as originally proposed by Hyde and Andersson [Z. Kristallogr. 174, 225 (1986)], is extended to include paths between the initial and final phases. Bravais lattices correspond to particu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Yin, Mengdi, Vvedensky, Dimitri D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Yin, Mengdi
Vvedensky, Dimitri D
description Martensitic transformations, viewed as continuous transformations between triply periodic minimal surfaces (TPMS), as originally proposed by Hyde and Andersson [Z. Kristallogr. 174, 225 (1986)], is extended to include paths between the initial and final phases. Bravais lattices correspond to particular TPMS whose lattice points are flat points, where the Gaussian curvature vanishes. Reversible transformations, which correspond to shape memory materials, occur only if lattice points remain at flat points on a TPMS throughout a continuous deformation. For the shape memory material NiTi, density-functional theory (DFT) yields irreversible and reversible paths with and without energy barriers, respectively. Although there are TPMS for face-centered gamma-Fe) and body-centered (alpha-Fe) cubic lattices, gamma to alpha deformation paths are not reversible, in agreement with non-vanishing energy barriers obtained from DFT.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2922281015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922281015</sourcerecordid><originalsourceid>FETCH-proquest_journals_29222810153</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCclIVSjOSCxIVchNzc0vqlRITUtLTS5RSMxLUcjNzMvMTcxRKC4tSktMTi3mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I0sjIyMLQwNDU2PiVAEAa8AxXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922281015</pqid></control><display><type>article</type><title>The shape memory effect and minimal surfaces</title><source>Free E- Journals</source><creator>Yin, Mengdi ; Vvedensky, Dimitri D</creator><creatorcontrib>Yin, Mengdi ; Vvedensky, Dimitri D</creatorcontrib><description>Martensitic transformations, viewed as continuous transformations between triply periodic minimal surfaces (TPMS), as originally proposed by Hyde and Andersson [Z. Kristallogr. 174, 225 (1986)], is extended to include paths between the initial and final phases. Bravais lattices correspond to particular TPMS whose lattice points are flat points, where the Gaussian curvature vanishes. Reversible transformations, which correspond to shape memory materials, occur only if lattice points remain at flat points on a TPMS throughout a continuous deformation. For the shape memory material NiTi, density-functional theory (DFT) yields irreversible and reversible paths with and without energy barriers, respectively. Although there are TPMS for face-centered gamma-Fe) and body-centered (alpha-Fe) cubic lattices, gamma to alpha deformation paths are not reversible, in agreement with non-vanishing energy barriers obtained from DFT.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alpha iron ; Body centered cubic lattice ; Deformation ; Density functional theory ; Martensitic transformations ; Minimal surfaces ; Shape effects ; Shape memory alloys</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Yin, Mengdi</creatorcontrib><creatorcontrib>Vvedensky, Dimitri D</creatorcontrib><title>The shape memory effect and minimal surfaces</title><title>arXiv.org</title><description>Martensitic transformations, viewed as continuous transformations between triply periodic minimal surfaces (TPMS), as originally proposed by Hyde and Andersson [Z. Kristallogr. 174, 225 (1986)], is extended to include paths between the initial and final phases. Bravais lattices correspond to particular TPMS whose lattice points are flat points, where the Gaussian curvature vanishes. Reversible transformations, which correspond to shape memory materials, occur only if lattice points remain at flat points on a TPMS throughout a continuous deformation. For the shape memory material NiTi, density-functional theory (DFT) yields irreversible and reversible paths with and without energy barriers, respectively. Although there are TPMS for face-centered gamma-Fe) and body-centered (alpha-Fe) cubic lattices, gamma to alpha deformation paths are not reversible, in agreement with non-vanishing energy barriers obtained from DFT.</description><subject>Alpha iron</subject><subject>Body centered cubic lattice</subject><subject>Deformation</subject><subject>Density functional theory</subject><subject>Martensitic transformations</subject><subject>Minimal surfaces</subject><subject>Shape effects</subject><subject>Shape memory alloys</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCclIVSjOSCxIVchNzc0vqlRITUtLTS5RSMxLUcjNzMvMTcxRKC4tSktMTi3mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I0sjIyMLQwNDU2PiVAEAa8AxXw</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Yin, Mengdi</creator><creator>Vvedensky, Dimitri D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240201</creationdate><title>The shape memory effect and minimal surfaces</title><author>Yin, Mengdi ; Vvedensky, Dimitri D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29222810153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alpha iron</topic><topic>Body centered cubic lattice</topic><topic>Deformation</topic><topic>Density functional theory</topic><topic>Martensitic transformations</topic><topic>Minimal surfaces</topic><topic>Shape effects</topic><topic>Shape memory alloys</topic><toplevel>online_resources</toplevel><creatorcontrib>Yin, Mengdi</creatorcontrib><creatorcontrib>Vvedensky, Dimitri D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yin, Mengdi</au><au>Vvedensky, Dimitri D</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>The shape memory effect and minimal surfaces</atitle><jtitle>arXiv.org</jtitle><date>2024-02-01</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Martensitic transformations, viewed as continuous transformations between triply periodic minimal surfaces (TPMS), as originally proposed by Hyde and Andersson [Z. Kristallogr. 174, 225 (1986)], is extended to include paths between the initial and final phases. Bravais lattices correspond to particular TPMS whose lattice points are flat points, where the Gaussian curvature vanishes. Reversible transformations, which correspond to shape memory materials, occur only if lattice points remain at flat points on a TPMS throughout a continuous deformation. For the shape memory material NiTi, density-functional theory (DFT) yields irreversible and reversible paths with and without energy barriers, respectively. Although there are TPMS for face-centered gamma-Fe) and body-centered (alpha-Fe) cubic lattices, gamma to alpha deformation paths are not reversible, in agreement with non-vanishing energy barriers obtained from DFT.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2922281015
source Free E- Journals
subjects Alpha iron
Body centered cubic lattice
Deformation
Density functional theory
Martensitic transformations
Minimal surfaces
Shape effects
Shape memory alloys
title The shape memory effect and minimal surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A48%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=The%20shape%20memory%20effect%20and%20minimal%20surfaces&rft.jtitle=arXiv.org&rft.au=Yin,%20Mengdi&rft.date=2024-02-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2922281015%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922281015&rft_id=info:pmid/&rfr_iscdi=true