Underwater image enhancement based on a portion denoising adversarial network

Underwater optical images are widely used in marine exploration. Due to the weak light problem caused by water depth, underwater images generally have the characteristics of background noise, dark brightness, strong blue‒green background color, and blurred images. These characteristics bring great i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent robotics and applications Online 2023-09, Vol.7 (3), p.485-496
Hauptverfasser: Li, Xingzhen, Gu, Haitao, Yu, Siquan, Tan, Yuanyuan, Cui, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 496
container_issue 3
container_start_page 485
container_title International journal of intelligent robotics and applications Online
container_volume 7
creator Li, Xingzhen
Gu, Haitao
Yu, Siquan
Tan, Yuanyuan
Cui, Qi
description Underwater optical images are widely used in marine exploration. Due to the weak light problem caused by water depth, underwater images generally have the characteristics of background noise, dark brightness, strong blue‒green background color, and blurred images. These characteristics bring great inconvenience to marine exploration tasks. In this way, the study of underwater image enhancement has important application value. Most of the existing underwater image enhancement methods mainly solve the problem of the overall denoising and brightness enhancement of the underwater image while ignoring the partial denoising of the image. To solve these problems, this paper proposes an improved generation adversarial network (GAN) to achieve clear processing of underwater images. The main improvements include three aspects. First, a portion denoising module is added to the generator to weaken the image noise produced by the generator in a detailed manner. Second, the acceleration module is introduced into the discriminator to accelerate the training process of the GAN network. Third, the sum of squares of confrontation loss, contrast loss and color loss is used as a loss function to make the training of the GAN network stable. Extensive experimental results show that the proposed model is superior to the comparison method in both quantitative and qualitative experiments, and the visualization results of the results are natural.
doi_str_mv 10.1007/s41315-023-00279-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922082293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922082293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-19bf72ec94b2f00ef3c43867085190a959d23f7cdd6004b7eb474b2e6cdc9b083</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEhX0DzBZYg6c7dSOR1TxJRWxUInNcuxLSWmdYqe0_HsMQbAx3Q3P-57uIeSMwQUDUJepZIJNCuCiAOBKF_sDMuJCymKiq-fD312xYzJOaQmZglLKUo7Iwzx4jDvbY6Tt2i6QYnixweEaQ09rm9DTLlBLN13s27x5DF2b2rCg1r9jTDa2dkUD9rsuvp6So8auEo5_5gmZ31w_Te-K2ePt_fRqVjjBdF8wXTeKo9NlzRsAbIQrRSUVVBOmweqJ9lw0ynkvAcpaYV2qjKJ03ukaKnFCzofeTezetph6s-y2MeSThmvOoeJci0zxgXKxSyliYzYx_xg_DAPzZc4M5kw2Z77NmX0OiSGUMhwWGP-q_0l9Aqyzce0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922082293</pqid></control><display><type>article</type><title>Underwater image enhancement based on a portion denoising adversarial network</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Li, Xingzhen ; Gu, Haitao ; Yu, Siquan ; Tan, Yuanyuan ; Cui, Qi</creator><creatorcontrib>Li, Xingzhen ; Gu, Haitao ; Yu, Siquan ; Tan, Yuanyuan ; Cui, Qi</creatorcontrib><description>Underwater optical images are widely used in marine exploration. Due to the weak light problem caused by water depth, underwater images generally have the characteristics of background noise, dark brightness, strong blue‒green background color, and blurred images. These characteristics bring great inconvenience to marine exploration tasks. In this way, the study of underwater image enhancement has important application value. Most of the existing underwater image enhancement methods mainly solve the problem of the overall denoising and brightness enhancement of the underwater image while ignoring the partial denoising of the image. To solve these problems, this paper proposes an improved generation adversarial network (GAN) to achieve clear processing of underwater images. The main improvements include three aspects. First, a portion denoising module is added to the generator to weaken the image noise produced by the generator in a detailed manner. Second, the acceleration module is introduced into the discriminator to accelerate the training process of the GAN network. Third, the sum of squares of confrontation loss, contrast loss and color loss is used as a loss function to make the training of the GAN network stable. Extensive experimental results show that the proposed model is superior to the comparison method in both quantitative and qualitative experiments, and the visualization results of the results are natural.</description><identifier>ISSN: 2366-5971</identifier><identifier>EISSN: 2366-598X</identifier><identifier>DOI: 10.1007/s41315-023-00279-x</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Artificial Intelligence ; Background noise ; Brightness ; Color ; Computer Science ; Control ; Deep learning ; Electronics and Microelectronics ; Image enhancement ; Instrumentation ; Machines ; Manufacturing ; Mechatronics ; Modules ; Neural networks ; Noise reduction ; Processes ; Regular Paper ; Robotics ; Teaching methods ; Training ; Underwater ; User Interfaces and Human Computer Interaction ; Water depth ; Wavelet transforms</subject><ispartof>International journal of intelligent robotics and applications Online, 2023-09, Vol.7 (3), p.485-496</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-19bf72ec94b2f00ef3c43867085190a959d23f7cdd6004b7eb474b2e6cdc9b083</citedby><cites>FETCH-LOGICAL-c319t-19bf72ec94b2f00ef3c43867085190a959d23f7cdd6004b7eb474b2e6cdc9b083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s41315-023-00279-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2922082293?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Li, Xingzhen</creatorcontrib><creatorcontrib>Gu, Haitao</creatorcontrib><creatorcontrib>Yu, Siquan</creatorcontrib><creatorcontrib>Tan, Yuanyuan</creatorcontrib><creatorcontrib>Cui, Qi</creatorcontrib><title>Underwater image enhancement based on a portion denoising adversarial network</title><title>International journal of intelligent robotics and applications Online</title><addtitle>Int J Intell Robot Appl</addtitle><description>Underwater optical images are widely used in marine exploration. Due to the weak light problem caused by water depth, underwater images generally have the characteristics of background noise, dark brightness, strong blue‒green background color, and blurred images. These characteristics bring great inconvenience to marine exploration tasks. In this way, the study of underwater image enhancement has important application value. Most of the existing underwater image enhancement methods mainly solve the problem of the overall denoising and brightness enhancement of the underwater image while ignoring the partial denoising of the image. To solve these problems, this paper proposes an improved generation adversarial network (GAN) to achieve clear processing of underwater images. The main improvements include three aspects. First, a portion denoising module is added to the generator to weaken the image noise produced by the generator in a detailed manner. Second, the acceleration module is introduced into the discriminator to accelerate the training process of the GAN network. Third, the sum of squares of confrontation loss, contrast loss and color loss is used as a loss function to make the training of the GAN network stable. Extensive experimental results show that the proposed model is superior to the comparison method in both quantitative and qualitative experiments, and the visualization results of the results are natural.</description><subject>Artificial Intelligence</subject><subject>Background noise</subject><subject>Brightness</subject><subject>Color</subject><subject>Computer Science</subject><subject>Control</subject><subject>Deep learning</subject><subject>Electronics and Microelectronics</subject><subject>Image enhancement</subject><subject>Instrumentation</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechatronics</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Processes</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Teaching methods</subject><subject>Training</subject><subject>Underwater</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Water depth</subject><subject>Wavelet transforms</subject><issn>2366-5971</issn><issn>2366-598X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD1PwzAQhi0EEhX0DzBZYg6c7dSOR1TxJRWxUInNcuxLSWmdYqe0_HsMQbAx3Q3P-57uIeSMwQUDUJepZIJNCuCiAOBKF_sDMuJCymKiq-fD312xYzJOaQmZglLKUo7Iwzx4jDvbY6Tt2i6QYnixweEaQ09rm9DTLlBLN13s27x5DF2b2rCg1r9jTDa2dkUD9rsuvp6So8auEo5_5gmZ31w_Te-K2ePt_fRqVjjBdF8wXTeKo9NlzRsAbIQrRSUVVBOmweqJ9lw0ynkvAcpaYV2qjKJ03ukaKnFCzofeTezetph6s-y2MeSThmvOoeJci0zxgXKxSyliYzYx_xg_DAPzZc4M5kw2Z77NmX0OiSGUMhwWGP-q_0l9Aqyzce0</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Li, Xingzhen</creator><creator>Gu, Haitao</creator><creator>Yu, Siquan</creator><creator>Tan, Yuanyuan</creator><creator>Cui, Qi</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20230901</creationdate><title>Underwater image enhancement based on a portion denoising adversarial network</title><author>Li, Xingzhen ; Gu, Haitao ; Yu, Siquan ; Tan, Yuanyuan ; Cui, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-19bf72ec94b2f00ef3c43867085190a959d23f7cdd6004b7eb474b2e6cdc9b083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Background noise</topic><topic>Brightness</topic><topic>Color</topic><topic>Computer Science</topic><topic>Control</topic><topic>Deep learning</topic><topic>Electronics and Microelectronics</topic><topic>Image enhancement</topic><topic>Instrumentation</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechatronics</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Processes</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Teaching methods</topic><topic>Training</topic><topic>Underwater</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Water depth</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Li, Xingzhen</creatorcontrib><creatorcontrib>Gu, Haitao</creatorcontrib><creatorcontrib>Yu, Siquan</creatorcontrib><creatorcontrib>Tan, Yuanyuan</creatorcontrib><creatorcontrib>Cui, Qi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of intelligent robotics and applications Online</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xingzhen</au><au>Gu, Haitao</au><au>Yu, Siquan</au><au>Tan, Yuanyuan</au><au>Cui, Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Underwater image enhancement based on a portion denoising adversarial network</atitle><jtitle>International journal of intelligent robotics and applications Online</jtitle><stitle>Int J Intell Robot Appl</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>7</volume><issue>3</issue><spage>485</spage><epage>496</epage><pages>485-496</pages><issn>2366-5971</issn><eissn>2366-598X</eissn><abstract>Underwater optical images are widely used in marine exploration. Due to the weak light problem caused by water depth, underwater images generally have the characteristics of background noise, dark brightness, strong blue‒green background color, and blurred images. These characteristics bring great inconvenience to marine exploration tasks. In this way, the study of underwater image enhancement has important application value. Most of the existing underwater image enhancement methods mainly solve the problem of the overall denoising and brightness enhancement of the underwater image while ignoring the partial denoising of the image. To solve these problems, this paper proposes an improved generation adversarial network (GAN) to achieve clear processing of underwater images. The main improvements include three aspects. First, a portion denoising module is added to the generator to weaken the image noise produced by the generator in a detailed manner. Second, the acceleration module is introduced into the discriminator to accelerate the training process of the GAN network. Third, the sum of squares of confrontation loss, contrast loss and color loss is used as a loss function to make the training of the GAN network stable. Extensive experimental results show that the proposed model is superior to the comparison method in both quantitative and qualitative experiments, and the visualization results of the results are natural.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s41315-023-00279-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2366-5971
ispartof International journal of intelligent robotics and applications Online, 2023-09, Vol.7 (3), p.485-496
issn 2366-5971
2366-598X
language eng
recordid cdi_proquest_journals_2922082293
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Artificial Intelligence
Background noise
Brightness
Color
Computer Science
Control
Deep learning
Electronics and Microelectronics
Image enhancement
Instrumentation
Machines
Manufacturing
Mechatronics
Modules
Neural networks
Noise reduction
Processes
Regular Paper
Robotics
Teaching methods
Training
Underwater
User Interfaces and Human Computer Interaction
Water depth
Wavelet transforms
title Underwater image enhancement based on a portion denoising adversarial network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Underwater%20image%20enhancement%20based%20on%20a%20portion%20denoising%20adversarial%20network&rft.jtitle=International%20journal%20of%20intelligent%20robotics%20and%20applications%20Online&rft.au=Li,%20Xingzhen&rft.date=2023-09-01&rft.volume=7&rft.issue=3&rft.spage=485&rft.epage=496&rft.pages=485-496&rft.issn=2366-5971&rft.eissn=2366-598X&rft_id=info:doi/10.1007/s41315-023-00279-x&rft_dat=%3Cproquest_cross%3E2922082293%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922082293&rft_id=info:pmid/&rfr_iscdi=true