Construction of Blow-Up Manifolds to the Equivariant Self-dual Chern–Simons–Schrödinger Equation
We consider the self-dual Chern–Simons–Schrödinger equation (CSS) under equivariance symmetry. Among others, (CSS) has a static solution Q and the pseudoconformal symmetry. We study the quantitative description of pseudoconformal blow-up solutions u such that u ( t , r ) - e i γ ∗ T - t Q ( r T - t...
Gespeichert in:
Veröffentlicht in: | Annals of PDE 2023-06, Vol.9 (1), p.6, Article 6 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 6 |
container_title | Annals of PDE |
container_volume | 9 |
creator | Kim, Kihyun Kwon, Soonsik |
description | We consider the self-dual Chern–Simons–Schrödinger equation (CSS) under equivariance symmetry. Among others, (CSS) has a static solution
Q
and the pseudoconformal symmetry. We study the quantitative description of pseudoconformal blow-up solutions
u
such that
u
(
t
,
r
)
-
e
i
γ
∗
T
-
t
Q
(
r
T
-
t
)
→
u
∗
as
t
→
T
-
.
When the equivariance index
m
≥
1
, we construct a set of initial data (under a codimension one condition) yielding pseudoconformal blow-up solutions. Moreover, when
m
≥
3
, we establish the codimension one property and Lipschitz regularity of the initial data set, which we call the
blow-up manifold
. This is a forward construction of blow-up solutions, as opposed to authors’ previous work [
25
], which is a backward construction of blow-up solutions with prescribed asymptotic profiles. In view of the instability result of [
25
], the codimension one condition established in this paper is expected to be optimal. We perform the modulation analysis with a robust energy method developed by Merle, Raphaël, Rodnianski, and others. One of our crucial inputs is a remarkable
conjugation identity
, which (with self-duality) enables the method of supersymmetric conjugates as like Schrödinger maps and wave maps. It suggests how we proceed to higher order derivatives while keeping the Hamiltonian form and construct adapted function spaces with their coercivity relations. More interestingly, it shows a deep connection with the Schrödinger maps at the linearized level and allows us to find a repulsivity structure for higher order derivatives. |
doi_str_mv | 10.1007/s40818-023-00147-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922076840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922076840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-280bec96b4fcbe83981f1a7b3a3bcf0b2a55b43f5c6e41228d194f783d5c948d3</originalsourceid><addsrcrecordid>eNp9kEtOwzAURSMEElXpBhhZYmzwN7GHEJWPVMSgdGw5jk1TpXFrJyBm7IG9sAF2wkpICBIzRu8N7rlP7yTJKUbnGKHsIjIksICIUIgQZhkUB8mEYCkh4Vl62O-cMMgpzo6TWYwbhBDBjHGUThKb-ya2oTNt5RvgHbiq_Qtc7cC9birn6zKC1oN2bcF831XPOlS6acHS1g6Wna5Bvrah-Xp7X1bbvmhYzDp8fpRV82TDwOih-CQ5crqOdvY7p8nqev6Y38LFw81dfrmAhmLZQiJQYY1MC-ZMYQWVAjuss4JqWhiHCqI5Lxh13KSWYUJEiSVzmaAlN5KJkk6Ts7F3F_y-s7FVG9-Fpj-piCQEZalgqE-RMWWCjzFYp3ah2urwqjBSg1E1GlW9UfVjVIkeoiMU-_Dw3F_1P9Q3eix8Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922076840</pqid></control><display><type>article</type><title>Construction of Blow-Up Manifolds to the Equivariant Self-dual Chern–Simons–Schrödinger Equation</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Kim, Kihyun ; Kwon, Soonsik</creator><creatorcontrib>Kim, Kihyun ; Kwon, Soonsik</creatorcontrib><description>We consider the self-dual Chern–Simons–Schrödinger equation (CSS) under equivariance symmetry. Among others, (CSS) has a static solution
Q
and the pseudoconformal symmetry. We study the quantitative description of pseudoconformal blow-up solutions
u
such that
u
(
t
,
r
)
-
e
i
γ
∗
T
-
t
Q
(
r
T
-
t
)
→
u
∗
as
t
→
T
-
.
When the equivariance index
m
≥
1
, we construct a set of initial data (under a codimension one condition) yielding pseudoconformal blow-up solutions. Moreover, when
m
≥
3
, we establish the codimension one property and Lipschitz regularity of the initial data set, which we call the
blow-up manifold
. This is a forward construction of blow-up solutions, as opposed to authors’ previous work [
25
], which is a backward construction of blow-up solutions with prescribed asymptotic profiles. In view of the instability result of [
25
], the codimension one condition established in this paper is expected to be optimal. We perform the modulation analysis with a robust energy method developed by Merle, Raphaël, Rodnianski, and others. One of our crucial inputs is a remarkable
conjugation identity
, which (with self-duality) enables the method of supersymmetric conjugates as like Schrödinger maps and wave maps. It suggests how we proceed to higher order derivatives while keeping the Hamiltonian form and construct adapted function spaces with their coercivity relations. More interestingly, it shows a deep connection with the Schrödinger maps at the linearized level and allows us to find a repulsivity structure for higher order derivatives.</description><identifier>ISSN: 2524-5317</identifier><identifier>EISSN: 2199-2576</identifier><identifier>DOI: 10.1007/s40818-023-00147-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Codes ; Coercivity ; Conjugation ; Construction ; Energy ; Energy methods ; Function space ; Gauges ; Hamiltonian functions ; Manifolds ; Mathematical Methods in Physics ; Partial Differential Equations ; Physics ; Physics and Astronomy ; Schrodinger equation ; Spacetime ; Symmetry</subject><ispartof>Annals of PDE, 2023-06, Vol.9 (1), p.6, Article 6</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-280bec96b4fcbe83981f1a7b3a3bcf0b2a55b43f5c6e41228d194f783d5c948d3</citedby><cites>FETCH-LOGICAL-c319t-280bec96b4fcbe83981f1a7b3a3bcf0b2a55b43f5c6e41228d194f783d5c948d3</cites><orcidid>0000-0002-0309-1273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40818-023-00147-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2922076840?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33703,33744,34005,34314,41488,42557,43659,43787,43805,43953,44067,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Kim, Kihyun</creatorcontrib><creatorcontrib>Kwon, Soonsik</creatorcontrib><title>Construction of Blow-Up Manifolds to the Equivariant Self-dual Chern–Simons–Schrödinger Equation</title><title>Annals of PDE</title><addtitle>Ann. PDE</addtitle><description>We consider the self-dual Chern–Simons–Schrödinger equation (CSS) under equivariance symmetry. Among others, (CSS) has a static solution
Q
and the pseudoconformal symmetry. We study the quantitative description of pseudoconformal blow-up solutions
u
such that
u
(
t
,
r
)
-
e
i
γ
∗
T
-
t
Q
(
r
T
-
t
)
→
u
∗
as
t
→
T
-
.
When the equivariance index
m
≥
1
, we construct a set of initial data (under a codimension one condition) yielding pseudoconformal blow-up solutions. Moreover, when
m
≥
3
, we establish the codimension one property and Lipschitz regularity of the initial data set, which we call the
blow-up manifold
. This is a forward construction of blow-up solutions, as opposed to authors’ previous work [
25
], which is a backward construction of blow-up solutions with prescribed asymptotic profiles. In view of the instability result of [
25
], the codimension one condition established in this paper is expected to be optimal. We perform the modulation analysis with a robust energy method developed by Merle, Raphaël, Rodnianski, and others. One of our crucial inputs is a remarkable
conjugation identity
, which (with self-duality) enables the method of supersymmetric conjugates as like Schrödinger maps and wave maps. It suggests how we proceed to higher order derivatives while keeping the Hamiltonian form and construct adapted function spaces with their coercivity relations. More interestingly, it shows a deep connection with the Schrödinger maps at the linearized level and allows us to find a repulsivity structure for higher order derivatives.</description><subject>Codes</subject><subject>Coercivity</subject><subject>Conjugation</subject><subject>Construction</subject><subject>Energy</subject><subject>Energy methods</subject><subject>Function space</subject><subject>Gauges</subject><subject>Hamiltonian functions</subject><subject>Manifolds</subject><subject>Mathematical Methods in Physics</subject><subject>Partial Differential Equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Schrodinger equation</subject><subject>Spacetime</subject><subject>Symmetry</subject><issn>2524-5317</issn><issn>2199-2576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtOwzAURSMEElXpBhhZYmzwN7GHEJWPVMSgdGw5jk1TpXFrJyBm7IG9sAF2wkpICBIzRu8N7rlP7yTJKUbnGKHsIjIksICIUIgQZhkUB8mEYCkh4Vl62O-cMMgpzo6TWYwbhBDBjHGUThKb-ya2oTNt5RvgHbiq_Qtc7cC9birn6zKC1oN2bcF831XPOlS6acHS1g6Wna5Bvrah-Xp7X1bbvmhYzDp8fpRV82TDwOih-CQ5crqOdvY7p8nqev6Y38LFw81dfrmAhmLZQiJQYY1MC-ZMYQWVAjuss4JqWhiHCqI5Lxh13KSWYUJEiSVzmaAlN5KJkk6Ts7F3F_y-s7FVG9-Fpj-piCQEZalgqE-RMWWCjzFYp3ah2urwqjBSg1E1GlW9UfVjVIkeoiMU-_Dw3F_1P9Q3eix8Tw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Kim, Kihyun</creator><creator>Kwon, Soonsik</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0309-1273</orcidid></search><sort><creationdate>20230601</creationdate><title>Construction of Blow-Up Manifolds to the Equivariant Self-dual Chern–Simons–Schrödinger Equation</title><author>Kim, Kihyun ; Kwon, Soonsik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-280bec96b4fcbe83981f1a7b3a3bcf0b2a55b43f5c6e41228d194f783d5c948d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Codes</topic><topic>Coercivity</topic><topic>Conjugation</topic><topic>Construction</topic><topic>Energy</topic><topic>Energy methods</topic><topic>Function space</topic><topic>Gauges</topic><topic>Hamiltonian functions</topic><topic>Manifolds</topic><topic>Mathematical Methods in Physics</topic><topic>Partial Differential Equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Schrodinger equation</topic><topic>Spacetime</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kihyun</creatorcontrib><creatorcontrib>Kwon, Soonsik</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of PDE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kihyun</au><au>Kwon, Soonsik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Blow-Up Manifolds to the Equivariant Self-dual Chern–Simons–Schrödinger Equation</atitle><jtitle>Annals of PDE</jtitle><stitle>Ann. PDE</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>9</volume><issue>1</issue><spage>6</spage><pages>6-</pages><artnum>6</artnum><issn>2524-5317</issn><eissn>2199-2576</eissn><abstract>We consider the self-dual Chern–Simons–Schrödinger equation (CSS) under equivariance symmetry. Among others, (CSS) has a static solution
Q
and the pseudoconformal symmetry. We study the quantitative description of pseudoconformal blow-up solutions
u
such that
u
(
t
,
r
)
-
e
i
γ
∗
T
-
t
Q
(
r
T
-
t
)
→
u
∗
as
t
→
T
-
.
When the equivariance index
m
≥
1
, we construct a set of initial data (under a codimension one condition) yielding pseudoconformal blow-up solutions. Moreover, when
m
≥
3
, we establish the codimension one property and Lipschitz regularity of the initial data set, which we call the
blow-up manifold
. This is a forward construction of blow-up solutions, as opposed to authors’ previous work [
25
], which is a backward construction of blow-up solutions with prescribed asymptotic profiles. In view of the instability result of [
25
], the codimension one condition established in this paper is expected to be optimal. We perform the modulation analysis with a robust energy method developed by Merle, Raphaël, Rodnianski, and others. One of our crucial inputs is a remarkable
conjugation identity
, which (with self-duality) enables the method of supersymmetric conjugates as like Schrödinger maps and wave maps. It suggests how we proceed to higher order derivatives while keeping the Hamiltonian form and construct adapted function spaces with their coercivity relations. More interestingly, it shows a deep connection with the Schrödinger maps at the linearized level and allows us to find a repulsivity structure for higher order derivatives.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40818-023-00147-8</doi><orcidid>https://orcid.org/0000-0002-0309-1273</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2524-5317 |
ispartof | Annals of PDE, 2023-06, Vol.9 (1), p.6, Article 6 |
issn | 2524-5317 2199-2576 |
language | eng |
recordid | cdi_proquest_journals_2922076840 |
source | ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Codes Coercivity Conjugation Construction Energy Energy methods Function space Gauges Hamiltonian functions Manifolds Mathematical Methods in Physics Partial Differential Equations Physics Physics and Astronomy Schrodinger equation Spacetime Symmetry |
title | Construction of Blow-Up Manifolds to the Equivariant Self-dual Chern–Simons–Schrödinger Equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Blow-Up%20Manifolds%20to%20the%20Equivariant%20Self-dual%20Chern%E2%80%93Simons%E2%80%93Schr%C3%B6dinger%20Equation&rft.jtitle=Annals%20of%20PDE&rft.au=Kim,%20Kihyun&rft.date=2023-06-01&rft.volume=9&rft.issue=1&rft.spage=6&rft.pages=6-&rft.artnum=6&rft.issn=2524-5317&rft.eissn=2199-2576&rft_id=info:doi/10.1007/s40818-023-00147-8&rft_dat=%3Cproquest_cross%3E2922076840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922076840&rft_id=info:pmid/&rfr_iscdi=true |