Construction of Blow-Up Manifolds to the Equivariant Self-dual Chern–Simons–Schrödinger Equation

We consider the self-dual Chern–Simons–Schrödinger equation (CSS) under equivariance symmetry. Among others, (CSS) has a static solution Q and the pseudoconformal symmetry. We study the quantitative description of pseudoconformal blow-up solutions u such that u ( t , r ) - e i γ ∗ T - t Q ( r T - t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of PDE 2023-06, Vol.9 (1), p.6, Article 6
Hauptverfasser: Kim, Kihyun, Kwon, Soonsik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 6
container_title Annals of PDE
container_volume 9
creator Kim, Kihyun
Kwon, Soonsik
description We consider the self-dual Chern–Simons–Schrödinger equation (CSS) under equivariance symmetry. Among others, (CSS) has a static solution Q and the pseudoconformal symmetry. We study the quantitative description of pseudoconformal blow-up solutions u such that u ( t , r ) - e i γ ∗ T - t Q ( r T - t ) → u ∗ as t → T - . When the equivariance index m ≥ 1 , we construct a set of initial data (under a codimension one condition) yielding pseudoconformal blow-up solutions. Moreover, when m ≥ 3 , we establish the codimension one property and Lipschitz regularity of the initial data set, which we call the blow-up manifold . This is a forward construction of blow-up solutions, as opposed to authors’ previous work [ 25 ], which is a backward construction of blow-up solutions with prescribed asymptotic profiles. In view of the instability result of [ 25 ], the codimension one condition established in this paper is expected to be optimal. We perform the modulation analysis with a robust energy method developed by Merle, Raphaël, Rodnianski, and others. One of our crucial inputs is a remarkable conjugation identity , which (with self-duality) enables the method of supersymmetric conjugates as like Schrödinger maps and wave maps. It suggests how we proceed to higher order derivatives while keeping the Hamiltonian form and construct adapted function spaces with their coercivity relations. More interestingly, it shows a deep connection with the Schrödinger maps at the linearized level and allows us to find a repulsivity structure for higher order derivatives.
doi_str_mv 10.1007/s40818-023-00147-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922076840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922076840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-280bec96b4fcbe83981f1a7b3a3bcf0b2a55b43f5c6e41228d194f783d5c948d3</originalsourceid><addsrcrecordid>eNp9kEtOwzAURSMEElXpBhhZYmzwN7GHEJWPVMSgdGw5jk1TpXFrJyBm7IG9sAF2wkpICBIzRu8N7rlP7yTJKUbnGKHsIjIksICIUIgQZhkUB8mEYCkh4Vl62O-cMMgpzo6TWYwbhBDBjHGUThKb-ya2oTNt5RvgHbiq_Qtc7cC9birn6zKC1oN2bcF831XPOlS6acHS1g6Wna5Bvrah-Xp7X1bbvmhYzDp8fpRV82TDwOih-CQ5crqOdvY7p8nqev6Y38LFw81dfrmAhmLZQiJQYY1MC-ZMYQWVAjuss4JqWhiHCqI5Lxh13KSWYUJEiSVzmaAlN5KJkk6Ts7F3F_y-s7FVG9-Fpj-piCQEZalgqE-RMWWCjzFYp3ah2urwqjBSg1E1GlW9UfVjVIkeoiMU-_Dw3F_1P9Q3eix8Tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922076840</pqid></control><display><type>article</type><title>Construction of Blow-Up Manifolds to the Equivariant Self-dual Chern–Simons–Schrödinger Equation</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Kim, Kihyun ; Kwon, Soonsik</creator><creatorcontrib>Kim, Kihyun ; Kwon, Soonsik</creatorcontrib><description>We consider the self-dual Chern–Simons–Schrödinger equation (CSS) under equivariance symmetry. Among others, (CSS) has a static solution Q and the pseudoconformal symmetry. We study the quantitative description of pseudoconformal blow-up solutions u such that u ( t , r ) - e i γ ∗ T - t Q ( r T - t ) → u ∗ as t → T - . When the equivariance index m ≥ 1 , we construct a set of initial data (under a codimension one condition) yielding pseudoconformal blow-up solutions. Moreover, when m ≥ 3 , we establish the codimension one property and Lipschitz regularity of the initial data set, which we call the blow-up manifold . This is a forward construction of blow-up solutions, as opposed to authors’ previous work [ 25 ], which is a backward construction of blow-up solutions with prescribed asymptotic profiles. In view of the instability result of [ 25 ], the codimension one condition established in this paper is expected to be optimal. We perform the modulation analysis with a robust energy method developed by Merle, Raphaël, Rodnianski, and others. One of our crucial inputs is a remarkable conjugation identity , which (with self-duality) enables the method of supersymmetric conjugates as like Schrödinger maps and wave maps. It suggests how we proceed to higher order derivatives while keeping the Hamiltonian form and construct adapted function spaces with their coercivity relations. More interestingly, it shows a deep connection with the Schrödinger maps at the linearized level and allows us to find a repulsivity structure for higher order derivatives.</description><identifier>ISSN: 2524-5317</identifier><identifier>EISSN: 2199-2576</identifier><identifier>DOI: 10.1007/s40818-023-00147-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Codes ; Coercivity ; Conjugation ; Construction ; Energy ; Energy methods ; Function space ; Gauges ; Hamiltonian functions ; Manifolds ; Mathematical Methods in Physics ; Partial Differential Equations ; Physics ; Physics and Astronomy ; Schrodinger equation ; Spacetime ; Symmetry</subject><ispartof>Annals of PDE, 2023-06, Vol.9 (1), p.6, Article 6</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-280bec96b4fcbe83981f1a7b3a3bcf0b2a55b43f5c6e41228d194f783d5c948d3</citedby><cites>FETCH-LOGICAL-c319t-280bec96b4fcbe83981f1a7b3a3bcf0b2a55b43f5c6e41228d194f783d5c948d3</cites><orcidid>0000-0002-0309-1273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40818-023-00147-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2922076840?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,21389,21390,21391,23256,27924,27925,33530,33703,33744,34005,34314,41488,42557,43659,43787,43805,43953,44067,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Kim, Kihyun</creatorcontrib><creatorcontrib>Kwon, Soonsik</creatorcontrib><title>Construction of Blow-Up Manifolds to the Equivariant Self-dual Chern–Simons–Schrödinger Equation</title><title>Annals of PDE</title><addtitle>Ann. PDE</addtitle><description>We consider the self-dual Chern–Simons–Schrödinger equation (CSS) under equivariance symmetry. Among others, (CSS) has a static solution Q and the pseudoconformal symmetry. We study the quantitative description of pseudoconformal blow-up solutions u such that u ( t , r ) - e i γ ∗ T - t Q ( r T - t ) → u ∗ as t → T - . When the equivariance index m ≥ 1 , we construct a set of initial data (under a codimension one condition) yielding pseudoconformal blow-up solutions. Moreover, when m ≥ 3 , we establish the codimension one property and Lipschitz regularity of the initial data set, which we call the blow-up manifold . This is a forward construction of blow-up solutions, as opposed to authors’ previous work [ 25 ], which is a backward construction of blow-up solutions with prescribed asymptotic profiles. In view of the instability result of [ 25 ], the codimension one condition established in this paper is expected to be optimal. We perform the modulation analysis with a robust energy method developed by Merle, Raphaël, Rodnianski, and others. One of our crucial inputs is a remarkable conjugation identity , which (with self-duality) enables the method of supersymmetric conjugates as like Schrödinger maps and wave maps. It suggests how we proceed to higher order derivatives while keeping the Hamiltonian form and construct adapted function spaces with their coercivity relations. More interestingly, it shows a deep connection with the Schrödinger maps at the linearized level and allows us to find a repulsivity structure for higher order derivatives.</description><subject>Codes</subject><subject>Coercivity</subject><subject>Conjugation</subject><subject>Construction</subject><subject>Energy</subject><subject>Energy methods</subject><subject>Function space</subject><subject>Gauges</subject><subject>Hamiltonian functions</subject><subject>Manifolds</subject><subject>Mathematical Methods in Physics</subject><subject>Partial Differential Equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Schrodinger equation</subject><subject>Spacetime</subject><subject>Symmetry</subject><issn>2524-5317</issn><issn>2199-2576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtOwzAURSMEElXpBhhZYmzwN7GHEJWPVMSgdGw5jk1TpXFrJyBm7IG9sAF2wkpICBIzRu8N7rlP7yTJKUbnGKHsIjIksICIUIgQZhkUB8mEYCkh4Vl62O-cMMgpzo6TWYwbhBDBjHGUThKb-ya2oTNt5RvgHbiq_Qtc7cC9birn6zKC1oN2bcF831XPOlS6acHS1g6Wna5Bvrah-Xp7X1bbvmhYzDp8fpRV82TDwOih-CQ5crqOdvY7p8nqev6Y38LFw81dfrmAhmLZQiJQYY1MC-ZMYQWVAjuss4JqWhiHCqI5Lxh13KSWYUJEiSVzmaAlN5KJkk6Ts7F3F_y-s7FVG9-Fpj-piCQEZalgqE-RMWWCjzFYp3ah2urwqjBSg1E1GlW9UfVjVIkeoiMU-_Dw3F_1P9Q3eix8Tw</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Kim, Kihyun</creator><creator>Kwon, Soonsik</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0309-1273</orcidid></search><sort><creationdate>20230601</creationdate><title>Construction of Blow-Up Manifolds to the Equivariant Self-dual Chern–Simons–Schrödinger Equation</title><author>Kim, Kihyun ; Kwon, Soonsik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-280bec96b4fcbe83981f1a7b3a3bcf0b2a55b43f5c6e41228d194f783d5c948d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Codes</topic><topic>Coercivity</topic><topic>Conjugation</topic><topic>Construction</topic><topic>Energy</topic><topic>Energy methods</topic><topic>Function space</topic><topic>Gauges</topic><topic>Hamiltonian functions</topic><topic>Manifolds</topic><topic>Mathematical Methods in Physics</topic><topic>Partial Differential Equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Schrodinger equation</topic><topic>Spacetime</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kihyun</creatorcontrib><creatorcontrib>Kwon, Soonsik</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Annals of PDE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kihyun</au><au>Kwon, Soonsik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Construction of Blow-Up Manifolds to the Equivariant Self-dual Chern–Simons–Schrödinger Equation</atitle><jtitle>Annals of PDE</jtitle><stitle>Ann. PDE</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>9</volume><issue>1</issue><spage>6</spage><pages>6-</pages><artnum>6</artnum><issn>2524-5317</issn><eissn>2199-2576</eissn><abstract>We consider the self-dual Chern–Simons–Schrödinger equation (CSS) under equivariance symmetry. Among others, (CSS) has a static solution Q and the pseudoconformal symmetry. We study the quantitative description of pseudoconformal blow-up solutions u such that u ( t , r ) - e i γ ∗ T - t Q ( r T - t ) → u ∗ as t → T - . When the equivariance index m ≥ 1 , we construct a set of initial data (under a codimension one condition) yielding pseudoconformal blow-up solutions. Moreover, when m ≥ 3 , we establish the codimension one property and Lipschitz regularity of the initial data set, which we call the blow-up manifold . This is a forward construction of blow-up solutions, as opposed to authors’ previous work [ 25 ], which is a backward construction of blow-up solutions with prescribed asymptotic profiles. In view of the instability result of [ 25 ], the codimension one condition established in this paper is expected to be optimal. We perform the modulation analysis with a robust energy method developed by Merle, Raphaël, Rodnianski, and others. One of our crucial inputs is a remarkable conjugation identity , which (with self-duality) enables the method of supersymmetric conjugates as like Schrödinger maps and wave maps. It suggests how we proceed to higher order derivatives while keeping the Hamiltonian form and construct adapted function spaces with their coercivity relations. More interestingly, it shows a deep connection with the Schrödinger maps at the linearized level and allows us to find a repulsivity structure for higher order derivatives.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40818-023-00147-8</doi><orcidid>https://orcid.org/0000-0002-0309-1273</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2524-5317
ispartof Annals of PDE, 2023-06, Vol.9 (1), p.6, Article 6
issn 2524-5317
2199-2576
language eng
recordid cdi_proquest_journals_2922076840
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Codes
Coercivity
Conjugation
Construction
Energy
Energy methods
Function space
Gauges
Hamiltonian functions
Manifolds
Mathematical Methods in Physics
Partial Differential Equations
Physics
Physics and Astronomy
Schrodinger equation
Spacetime
Symmetry
title Construction of Blow-Up Manifolds to the Equivariant Self-dual Chern–Simons–Schrödinger Equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Construction%20of%20Blow-Up%20Manifolds%20to%20the%20Equivariant%20Self-dual%20Chern%E2%80%93Simons%E2%80%93Schr%C3%B6dinger%20Equation&rft.jtitle=Annals%20of%20PDE&rft.au=Kim,%20Kihyun&rft.date=2023-06-01&rft.volume=9&rft.issue=1&rft.spage=6&rft.pages=6-&rft.artnum=6&rft.issn=2524-5317&rft.eissn=2199-2576&rft_id=info:doi/10.1007/s40818-023-00147-8&rft_dat=%3Cproquest_cross%3E2922076840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922076840&rft_id=info:pmid/&rfr_iscdi=true