Command Filter-Based Adaptive Fuzzy Self-Triggered Control for MIMO Nonlinear Systems with Time-Varying Full-State Constraints
This paper focuses on the adaptive fuzzy self-triggered tracking controller design for full-state constrained multiple-input and multiple-output nonlinear systems. The implementation of the control scheme is categorized into three steps: (1) restricting the states to satisfy the corresponding constr...
Gespeichert in:
Veröffentlicht in: | International journal of fuzzy systems 2023-11, Vol.25 (8), p.3144-3161 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3161 |
---|---|
container_issue | 8 |
container_start_page | 3144 |
container_title | International journal of fuzzy systems |
container_volume | 25 |
creator | Huang, Sai Zong, Guangdeng Wang, Huanqing Zhao, Xudong Alharbi, Khalid H. |
description | This paper focuses on the adaptive fuzzy self-triggered tracking controller design for full-state constrained multiple-input and multiple-output nonlinear systems. The implementation of the control scheme is categorized into three steps: (1) restricting the states to satisfy the corresponding constraints; (2) handling the explosion of complexity; and (3) achieving a better compromise between system performances and communication loads. First, tangent barrier Lyapunov functions are applied to constrain the outputs and system states within time-varying boundaries. Then, the explosion of complexity is addressed via the command filtering method. Furthermore, an adaptive self-triggered control mechanism is developed to reduce resource consumption for each subsystem. In addition to solving the problem of monitoring the triggering threshold continuously, the designed adaptive self-triggered mechanism allows the triggering intervals to be dynamically adjusted according to the tracking errors, which makes the proposed control protocol possible to coordinate the system performances and communication resources. By using the Lyapunov stability criterion, it is demonstrated that all signals of the closed-loop systems are semi-globally uniformly ultimately bounded. Finally, two simulation examples are presented to confirm the effectiveness of the proposed control approach. |
doi_str_mv | 10.1007/s40815-023-01560-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922076589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922076589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d5f66aa4ee03cfccd8a0be0b49a31bbdf86c29b8ebff90701fb7fd4b555029f83</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWGpfwFXAdTSXuWVZB6uFVhetbkMyk9TIXGqSKu3CZzd1BHeuAif__x3OB8AlwdcE4_zGJ7ggKcKUIUzSDKPiBIwo4RwxSsgpGMUhRTTJ-TmYeG8VZoRmLM3YCHyVfdvKroYz2wTt0K30uobTWm6D_dBwtjsc9nClG4PWzm422sXfsu-C6xtoegeX8-UTfOy7xnZaOrja-6BbDz9teIVr22r0It3edptIahq0CjLoY98HJ20X_AU4M7LxevL7jsHz7G5dPqDF0_28nC5QxQgPqE5NlkmZaI1ZZaqqLiRWGquES0aUqk2RVZSrQitjOM4xMSo3daLSNMWUm4KNwdXA3br-fad9EG_9znVxpaCcUpxnacFjig6pyvXeO23E1tk2HiAIFkfVYlAtomrxo1oc0Wwo-RjuoqE_9D-tb0qJg5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922076589</pqid></control><display><type>article</type><title>Command Filter-Based Adaptive Fuzzy Self-Triggered Control for MIMO Nonlinear Systems with Time-Varying Full-State Constraints</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Huang, Sai ; Zong, Guangdeng ; Wang, Huanqing ; Zhao, Xudong ; Alharbi, Khalid H.</creator><creatorcontrib>Huang, Sai ; Zong, Guangdeng ; Wang, Huanqing ; Zhao, Xudong ; Alharbi, Khalid H.</creatorcontrib><description>This paper focuses on the adaptive fuzzy self-triggered tracking controller design for full-state constrained multiple-input and multiple-output nonlinear systems. The implementation of the control scheme is categorized into three steps: (1) restricting the states to satisfy the corresponding constraints; (2) handling the explosion of complexity; and (3) achieving a better compromise between system performances and communication loads. First, tangent barrier Lyapunov functions are applied to constrain the outputs and system states within time-varying boundaries. Then, the explosion of complexity is addressed via the command filtering method. Furthermore, an adaptive self-triggered control mechanism is developed to reduce resource consumption for each subsystem. In addition to solving the problem of monitoring the triggering threshold continuously, the designed adaptive self-triggered mechanism allows the triggering intervals to be dynamically adjusted according to the tracking errors, which makes the proposed control protocol possible to coordinate the system performances and communication resources. By using the Lyapunov stability criterion, it is demonstrated that all signals of the closed-loop systems are semi-globally uniformly ultimately bounded. Finally, two simulation examples are presented to confirm the effectiveness of the proposed control approach.</description><identifier>ISSN: 1562-2479</identifier><identifier>EISSN: 2199-3211</identifier><identifier>DOI: 10.1007/s40815-023-01560-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive control ; Approximation ; Artificial Intelligence ; Closed loops ; Communication ; Complexity ; Computational Intelligence ; Constraints ; Control algorithms ; Control systems design ; Controllers ; Coordinate transformations ; Design ; Engineering ; Feedback control ; Fuzzy control ; Fuzzy logic ; Fuzzy sets ; Liapunov functions ; Management Science ; Nonlinear control ; Nonlinear systems ; Operations Research ; Stability criteria ; Subsystems ; Tracking control ; Tracking errors</subject><ispartof>International journal of fuzzy systems, 2023-11, Vol.25 (8), p.3144-3161</ispartof><rights>The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d5f66aa4ee03cfccd8a0be0b49a31bbdf86c29b8ebff90701fb7fd4b555029f83</citedby><cites>FETCH-LOGICAL-c319t-d5f66aa4ee03cfccd8a0be0b49a31bbdf86c29b8ebff90701fb7fd4b555029f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40815-023-01560-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2922076589?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Huang, Sai</creatorcontrib><creatorcontrib>Zong, Guangdeng</creatorcontrib><creatorcontrib>Wang, Huanqing</creatorcontrib><creatorcontrib>Zhao, Xudong</creatorcontrib><creatorcontrib>Alharbi, Khalid H.</creatorcontrib><title>Command Filter-Based Adaptive Fuzzy Self-Triggered Control for MIMO Nonlinear Systems with Time-Varying Full-State Constraints</title><title>International journal of fuzzy systems</title><addtitle>Int. J. Fuzzy Syst</addtitle><description>This paper focuses on the adaptive fuzzy self-triggered tracking controller design for full-state constrained multiple-input and multiple-output nonlinear systems. The implementation of the control scheme is categorized into three steps: (1) restricting the states to satisfy the corresponding constraints; (2) handling the explosion of complexity; and (3) achieving a better compromise between system performances and communication loads. First, tangent barrier Lyapunov functions are applied to constrain the outputs and system states within time-varying boundaries. Then, the explosion of complexity is addressed via the command filtering method. Furthermore, an adaptive self-triggered control mechanism is developed to reduce resource consumption for each subsystem. In addition to solving the problem of monitoring the triggering threshold continuously, the designed adaptive self-triggered mechanism allows the triggering intervals to be dynamically adjusted according to the tracking errors, which makes the proposed control protocol possible to coordinate the system performances and communication resources. By using the Lyapunov stability criterion, it is demonstrated that all signals of the closed-loop systems are semi-globally uniformly ultimately bounded. Finally, two simulation examples are presented to confirm the effectiveness of the proposed control approach.</description><subject>Adaptive control</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Closed loops</subject><subject>Communication</subject><subject>Complexity</subject><subject>Computational Intelligence</subject><subject>Constraints</subject><subject>Control algorithms</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Coordinate transformations</subject><subject>Design</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Liapunov functions</subject><subject>Management Science</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Operations Research</subject><subject>Stability criteria</subject><subject>Subsystems</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>1562-2479</issn><issn>2199-3211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWGpfwFXAdTSXuWVZB6uFVhetbkMyk9TIXGqSKu3CZzd1BHeuAif__x3OB8AlwdcE4_zGJ7ggKcKUIUzSDKPiBIwo4RwxSsgpGMUhRTTJ-TmYeG8VZoRmLM3YCHyVfdvKroYz2wTt0K30uobTWm6D_dBwtjsc9nClG4PWzm422sXfsu-C6xtoegeX8-UTfOy7xnZaOrja-6BbDz9teIVr22r0It3edptIahq0CjLoY98HJ20X_AU4M7LxevL7jsHz7G5dPqDF0_28nC5QxQgPqE5NlkmZaI1ZZaqqLiRWGquES0aUqk2RVZSrQitjOM4xMSo3daLSNMWUm4KNwdXA3br-fad9EG_9znVxpaCcUpxnacFjig6pyvXeO23E1tk2HiAIFkfVYlAtomrxo1oc0Wwo-RjuoqE_9D-tb0qJg5E</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Huang, Sai</creator><creator>Zong, Guangdeng</creator><creator>Wang, Huanqing</creator><creator>Zhao, Xudong</creator><creator>Alharbi, Khalid H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20231101</creationdate><title>Command Filter-Based Adaptive Fuzzy Self-Triggered Control for MIMO Nonlinear Systems with Time-Varying Full-State Constraints</title><author>Huang, Sai ; Zong, Guangdeng ; Wang, Huanqing ; Zhao, Xudong ; Alharbi, Khalid H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d5f66aa4ee03cfccd8a0be0b49a31bbdf86c29b8ebff90701fb7fd4b555029f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Closed loops</topic><topic>Communication</topic><topic>Complexity</topic><topic>Computational Intelligence</topic><topic>Constraints</topic><topic>Control algorithms</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Coordinate transformations</topic><topic>Design</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Liapunov functions</topic><topic>Management Science</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Operations Research</topic><topic>Stability criteria</topic><topic>Subsystems</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Sai</creatorcontrib><creatorcontrib>Zong, Guangdeng</creatorcontrib><creatorcontrib>Wang, Huanqing</creatorcontrib><creatorcontrib>Zhao, Xudong</creatorcontrib><creatorcontrib>Alharbi, Khalid H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Sai</au><au>Zong, Guangdeng</au><au>Wang, Huanqing</au><au>Zhao, Xudong</au><au>Alharbi, Khalid H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Command Filter-Based Adaptive Fuzzy Self-Triggered Control for MIMO Nonlinear Systems with Time-Varying Full-State Constraints</atitle><jtitle>International journal of fuzzy systems</jtitle><stitle>Int. J. Fuzzy Syst</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>25</volume><issue>8</issue><spage>3144</spage><epage>3161</epage><pages>3144-3161</pages><issn>1562-2479</issn><eissn>2199-3211</eissn><abstract>This paper focuses on the adaptive fuzzy self-triggered tracking controller design for full-state constrained multiple-input and multiple-output nonlinear systems. The implementation of the control scheme is categorized into three steps: (1) restricting the states to satisfy the corresponding constraints; (2) handling the explosion of complexity; and (3) achieving a better compromise between system performances and communication loads. First, tangent barrier Lyapunov functions are applied to constrain the outputs and system states within time-varying boundaries. Then, the explosion of complexity is addressed via the command filtering method. Furthermore, an adaptive self-triggered control mechanism is developed to reduce resource consumption for each subsystem. In addition to solving the problem of monitoring the triggering threshold continuously, the designed adaptive self-triggered mechanism allows the triggering intervals to be dynamically adjusted according to the tracking errors, which makes the proposed control protocol possible to coordinate the system performances and communication resources. By using the Lyapunov stability criterion, it is demonstrated that all signals of the closed-loop systems are semi-globally uniformly ultimately bounded. Finally, two simulation examples are presented to confirm the effectiveness of the proposed control approach.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40815-023-01560-8</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1562-2479 |
ispartof | International journal of fuzzy systems, 2023-11, Vol.25 (8), p.3144-3161 |
issn | 1562-2479 2199-3211 |
language | eng |
recordid | cdi_proquest_journals_2922076589 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Adaptive control Approximation Artificial Intelligence Closed loops Communication Complexity Computational Intelligence Constraints Control algorithms Control systems design Controllers Coordinate transformations Design Engineering Feedback control Fuzzy control Fuzzy logic Fuzzy sets Liapunov functions Management Science Nonlinear control Nonlinear systems Operations Research Stability criteria Subsystems Tracking control Tracking errors |
title | Command Filter-Based Adaptive Fuzzy Self-Triggered Control for MIMO Nonlinear Systems with Time-Varying Full-State Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Command%20Filter-Based%20Adaptive%20Fuzzy%20Self-Triggered%20Control%20for%20MIMO%20Nonlinear%20Systems%20with%20Time-Varying%20Full-State%20Constraints&rft.jtitle=International%20journal%20of%20fuzzy%20systems&rft.au=Huang,%20Sai&rft.date=2023-11-01&rft.volume=25&rft.issue=8&rft.spage=3144&rft.epage=3161&rft.pages=3144-3161&rft.issn=1562-2479&rft.eissn=2199-3211&rft_id=info:doi/10.1007/s40815-023-01560-8&rft_dat=%3Cproquest_cross%3E2922076589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922076589&rft_id=info:pmid/&rfr_iscdi=true |