Command Filter-Based Adaptive Fuzzy Self-Triggered Control for MIMO Nonlinear Systems with Time-Varying Full-State Constraints

This paper focuses on the adaptive fuzzy self-triggered tracking controller design for full-state constrained multiple-input and multiple-output nonlinear systems. The implementation of the control scheme is categorized into three steps: (1) restricting the states to satisfy the corresponding constr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fuzzy systems 2023-11, Vol.25 (8), p.3144-3161
Hauptverfasser: Huang, Sai, Zong, Guangdeng, Wang, Huanqing, Zhao, Xudong, Alharbi, Khalid H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3161
container_issue 8
container_start_page 3144
container_title International journal of fuzzy systems
container_volume 25
creator Huang, Sai
Zong, Guangdeng
Wang, Huanqing
Zhao, Xudong
Alharbi, Khalid H.
description This paper focuses on the adaptive fuzzy self-triggered tracking controller design for full-state constrained multiple-input and multiple-output nonlinear systems. The implementation of the control scheme is categorized into three steps: (1) restricting the states to satisfy the corresponding constraints; (2) handling the explosion of complexity; and (3) achieving a better compromise between system performances and communication loads. First, tangent barrier Lyapunov functions are applied to constrain the outputs and system states within time-varying boundaries. Then, the explosion of complexity is addressed via the command filtering method. Furthermore, an adaptive self-triggered control mechanism is developed to reduce resource consumption for each subsystem. In addition to solving the problem of monitoring the triggering threshold continuously, the designed adaptive self-triggered mechanism allows the triggering intervals to be dynamically adjusted according to the tracking errors, which makes the proposed control protocol possible to coordinate the system performances and communication resources. By using the Lyapunov stability criterion, it is demonstrated that all signals of the closed-loop systems are semi-globally uniformly ultimately bounded. Finally, two simulation examples are presented to confirm the effectiveness of the proposed control approach.
doi_str_mv 10.1007/s40815-023-01560-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922076589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922076589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d5f66aa4ee03cfccd8a0be0b49a31bbdf86c29b8ebff90701fb7fd4b555029f83</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWGpfwFXAdTSXuWVZB6uFVhetbkMyk9TIXGqSKu3CZzd1BHeuAif__x3OB8AlwdcE4_zGJ7ggKcKUIUzSDKPiBIwo4RwxSsgpGMUhRTTJ-TmYeG8VZoRmLM3YCHyVfdvKroYz2wTt0K30uobTWm6D_dBwtjsc9nClG4PWzm422sXfsu-C6xtoegeX8-UTfOy7xnZaOrja-6BbDz9teIVr22r0It3edptIahq0CjLoY98HJ20X_AU4M7LxevL7jsHz7G5dPqDF0_28nC5QxQgPqE5NlkmZaI1ZZaqqLiRWGquES0aUqk2RVZSrQitjOM4xMSo3daLSNMWUm4KNwdXA3br-fad9EG_9znVxpaCcUpxnacFjig6pyvXeO23E1tk2HiAIFkfVYlAtomrxo1oc0Wwo-RjuoqE_9D-tb0qJg5E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922076589</pqid></control><display><type>article</type><title>Command Filter-Based Adaptive Fuzzy Self-Triggered Control for MIMO Nonlinear Systems with Time-Varying Full-State Constraints</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Huang, Sai ; Zong, Guangdeng ; Wang, Huanqing ; Zhao, Xudong ; Alharbi, Khalid H.</creator><creatorcontrib>Huang, Sai ; Zong, Guangdeng ; Wang, Huanqing ; Zhao, Xudong ; Alharbi, Khalid H.</creatorcontrib><description>This paper focuses on the adaptive fuzzy self-triggered tracking controller design for full-state constrained multiple-input and multiple-output nonlinear systems. The implementation of the control scheme is categorized into three steps: (1) restricting the states to satisfy the corresponding constraints; (2) handling the explosion of complexity; and (3) achieving a better compromise between system performances and communication loads. First, tangent barrier Lyapunov functions are applied to constrain the outputs and system states within time-varying boundaries. Then, the explosion of complexity is addressed via the command filtering method. Furthermore, an adaptive self-triggered control mechanism is developed to reduce resource consumption for each subsystem. In addition to solving the problem of monitoring the triggering threshold continuously, the designed adaptive self-triggered mechanism allows the triggering intervals to be dynamically adjusted according to the tracking errors, which makes the proposed control protocol possible to coordinate the system performances and communication resources. By using the Lyapunov stability criterion, it is demonstrated that all signals of the closed-loop systems are semi-globally uniformly ultimately bounded. Finally, two simulation examples are presented to confirm the effectiveness of the proposed control approach.</description><identifier>ISSN: 1562-2479</identifier><identifier>EISSN: 2199-3211</identifier><identifier>DOI: 10.1007/s40815-023-01560-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adaptive control ; Approximation ; Artificial Intelligence ; Closed loops ; Communication ; Complexity ; Computational Intelligence ; Constraints ; Control algorithms ; Control systems design ; Controllers ; Coordinate transformations ; Design ; Engineering ; Feedback control ; Fuzzy control ; Fuzzy logic ; Fuzzy sets ; Liapunov functions ; Management Science ; Nonlinear control ; Nonlinear systems ; Operations Research ; Stability criteria ; Subsystems ; Tracking control ; Tracking errors</subject><ispartof>International journal of fuzzy systems, 2023-11, Vol.25 (8), p.3144-3161</ispartof><rights>The Author(s) under exclusive licence to Taiwan Fuzzy Systems Association 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d5f66aa4ee03cfccd8a0be0b49a31bbdf86c29b8ebff90701fb7fd4b555029f83</citedby><cites>FETCH-LOGICAL-c319t-d5f66aa4ee03cfccd8a0be0b49a31bbdf86c29b8ebff90701fb7fd4b555029f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40815-023-01560-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2922076589?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Huang, Sai</creatorcontrib><creatorcontrib>Zong, Guangdeng</creatorcontrib><creatorcontrib>Wang, Huanqing</creatorcontrib><creatorcontrib>Zhao, Xudong</creatorcontrib><creatorcontrib>Alharbi, Khalid H.</creatorcontrib><title>Command Filter-Based Adaptive Fuzzy Self-Triggered Control for MIMO Nonlinear Systems with Time-Varying Full-State Constraints</title><title>International journal of fuzzy systems</title><addtitle>Int. J. Fuzzy Syst</addtitle><description>This paper focuses on the adaptive fuzzy self-triggered tracking controller design for full-state constrained multiple-input and multiple-output nonlinear systems. The implementation of the control scheme is categorized into three steps: (1) restricting the states to satisfy the corresponding constraints; (2) handling the explosion of complexity; and (3) achieving a better compromise between system performances and communication loads. First, tangent barrier Lyapunov functions are applied to constrain the outputs and system states within time-varying boundaries. Then, the explosion of complexity is addressed via the command filtering method. Furthermore, an adaptive self-triggered control mechanism is developed to reduce resource consumption for each subsystem. In addition to solving the problem of monitoring the triggering threshold continuously, the designed adaptive self-triggered mechanism allows the triggering intervals to be dynamically adjusted according to the tracking errors, which makes the proposed control protocol possible to coordinate the system performances and communication resources. By using the Lyapunov stability criterion, it is demonstrated that all signals of the closed-loop systems are semi-globally uniformly ultimately bounded. Finally, two simulation examples are presented to confirm the effectiveness of the proposed control approach.</description><subject>Adaptive control</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Closed loops</subject><subject>Communication</subject><subject>Complexity</subject><subject>Computational Intelligence</subject><subject>Constraints</subject><subject>Control algorithms</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>Coordinate transformations</subject><subject>Design</subject><subject>Engineering</subject><subject>Feedback control</subject><subject>Fuzzy control</subject><subject>Fuzzy logic</subject><subject>Fuzzy sets</subject><subject>Liapunov functions</subject><subject>Management Science</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Operations Research</subject><subject>Stability criteria</subject><subject>Subsystems</subject><subject>Tracking control</subject><subject>Tracking errors</subject><issn>1562-2479</issn><issn>2199-3211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKAzEUhoMoWGpfwFXAdTSXuWVZB6uFVhetbkMyk9TIXGqSKu3CZzd1BHeuAif__x3OB8AlwdcE4_zGJ7ggKcKUIUzSDKPiBIwo4RwxSsgpGMUhRTTJ-TmYeG8VZoRmLM3YCHyVfdvKroYz2wTt0K30uobTWm6D_dBwtjsc9nClG4PWzm422sXfsu-C6xtoegeX8-UTfOy7xnZaOrja-6BbDz9teIVr22r0It3edptIahq0CjLoY98HJ20X_AU4M7LxevL7jsHz7G5dPqDF0_28nC5QxQgPqE5NlkmZaI1ZZaqqLiRWGquES0aUqk2RVZSrQitjOM4xMSo3daLSNMWUm4KNwdXA3br-fad9EG_9znVxpaCcUpxnacFjig6pyvXeO23E1tk2HiAIFkfVYlAtomrxo1oc0Wwo-RjuoqE_9D-tb0qJg5E</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Huang, Sai</creator><creator>Zong, Guangdeng</creator><creator>Wang, Huanqing</creator><creator>Zhao, Xudong</creator><creator>Alharbi, Khalid H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20231101</creationdate><title>Command Filter-Based Adaptive Fuzzy Self-Triggered Control for MIMO Nonlinear Systems with Time-Varying Full-State Constraints</title><author>Huang, Sai ; Zong, Guangdeng ; Wang, Huanqing ; Zhao, Xudong ; Alharbi, Khalid H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d5f66aa4ee03cfccd8a0be0b49a31bbdf86c29b8ebff90701fb7fd4b555029f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Closed loops</topic><topic>Communication</topic><topic>Complexity</topic><topic>Computational Intelligence</topic><topic>Constraints</topic><topic>Control algorithms</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>Coordinate transformations</topic><topic>Design</topic><topic>Engineering</topic><topic>Feedback control</topic><topic>Fuzzy control</topic><topic>Fuzzy logic</topic><topic>Fuzzy sets</topic><topic>Liapunov functions</topic><topic>Management Science</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Operations Research</topic><topic>Stability criteria</topic><topic>Subsystems</topic><topic>Tracking control</topic><topic>Tracking errors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Sai</creatorcontrib><creatorcontrib>Zong, Guangdeng</creatorcontrib><creatorcontrib>Wang, Huanqing</creatorcontrib><creatorcontrib>Zhao, Xudong</creatorcontrib><creatorcontrib>Alharbi, Khalid H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Sai</au><au>Zong, Guangdeng</au><au>Wang, Huanqing</au><au>Zhao, Xudong</au><au>Alharbi, Khalid H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Command Filter-Based Adaptive Fuzzy Self-Triggered Control for MIMO Nonlinear Systems with Time-Varying Full-State Constraints</atitle><jtitle>International journal of fuzzy systems</jtitle><stitle>Int. J. Fuzzy Syst</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>25</volume><issue>8</issue><spage>3144</spage><epage>3161</epage><pages>3144-3161</pages><issn>1562-2479</issn><eissn>2199-3211</eissn><abstract>This paper focuses on the adaptive fuzzy self-triggered tracking controller design for full-state constrained multiple-input and multiple-output nonlinear systems. The implementation of the control scheme is categorized into three steps: (1) restricting the states to satisfy the corresponding constraints; (2) handling the explosion of complexity; and (3) achieving a better compromise between system performances and communication loads. First, tangent barrier Lyapunov functions are applied to constrain the outputs and system states within time-varying boundaries. Then, the explosion of complexity is addressed via the command filtering method. Furthermore, an adaptive self-triggered control mechanism is developed to reduce resource consumption for each subsystem. In addition to solving the problem of monitoring the triggering threshold continuously, the designed adaptive self-triggered mechanism allows the triggering intervals to be dynamically adjusted according to the tracking errors, which makes the proposed control protocol possible to coordinate the system performances and communication resources. By using the Lyapunov stability criterion, it is demonstrated that all signals of the closed-loop systems are semi-globally uniformly ultimately bounded. Finally, two simulation examples are presented to confirm the effectiveness of the proposed control approach.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40815-023-01560-8</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1562-2479
ispartof International journal of fuzzy systems, 2023-11, Vol.25 (8), p.3144-3161
issn 1562-2479
2199-3211
language eng
recordid cdi_proquest_journals_2922076589
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Adaptive control
Approximation
Artificial Intelligence
Closed loops
Communication
Complexity
Computational Intelligence
Constraints
Control algorithms
Control systems design
Controllers
Coordinate transformations
Design
Engineering
Feedback control
Fuzzy control
Fuzzy logic
Fuzzy sets
Liapunov functions
Management Science
Nonlinear control
Nonlinear systems
Operations Research
Stability criteria
Subsystems
Tracking control
Tracking errors
title Command Filter-Based Adaptive Fuzzy Self-Triggered Control for MIMO Nonlinear Systems with Time-Varying Full-State Constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Command%20Filter-Based%20Adaptive%20Fuzzy%20Self-Triggered%20Control%20for%20MIMO%20Nonlinear%20Systems%20with%20Time-Varying%20Full-State%20Constraints&rft.jtitle=International%20journal%20of%20fuzzy%20systems&rft.au=Huang,%20Sai&rft.date=2023-11-01&rft.volume=25&rft.issue=8&rft.spage=3144&rft.epage=3161&rft.pages=3144-3161&rft.issn=1562-2479&rft.eissn=2199-3211&rft_id=info:doi/10.1007/s40815-023-01560-8&rft_dat=%3Cproquest_cross%3E2922076589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922076589&rft_id=info:pmid/&rfr_iscdi=true