The RAPTR furnace: a rapid heating and cooling sample furnace for in situ X-ray scattering studies of temperature-induced reactions
In situ X-ray scattering provides valuable insights into the mechanisms and kinetics of reactions and structural transformations. For reactions and structural transformations primarily driven by temperature, and not coupled to chemical/electrochemical triggers, our ability to initiate and quench pro...
Gespeichert in:
Veröffentlicht in: | Journal of applied crystallography 2024-02, Vol.57 (1), p.88-93 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93 |
---|---|
container_issue | 1 |
container_start_page | 88 |
container_title | Journal of applied crystallography |
container_volume | 57 |
creator | Hu, Danrui Beauvais, Michelle L. Mullens, Bryce G. Sanchez Monserrate, Bryan A. Vornholt, Simon M. Kamm, Gabrielle E. Ferrari, John J. Chupas, Peter J. Chapman, Karena W. |
description | In situ
X-ray scattering provides valuable insights into the mechanisms and kinetics of reactions and structural transformations. For reactions and structural transformations primarily driven by temperature, and not coupled to chemical/electrochemical triggers, our ability to initiate and quench processes thermally is a practical limit for probing fast reactive phenomena. Meaningful quantitative analysis requires the dynamic phenomena to be triggered on fast time scales relative to the reaction/transformation kinetics. This article describes a new sample furnace, the Rapid-Actuating Pneumatic Thermal Reactor or RAPTR, for time-resolved
in situ
X-ray scattering studies initiated by temperature. The RAPTR quickly heats and cools samples by translating them into and out of a pre-heated hot zone. Using diffraction thermometry, it is shown that the samples can be heated/cooled in 10 s or less, with temperatures up to ∼1000°C being accessible. The application of the RAPTR furnace is demonstrated by exploring a fast solid-state reaction: the synthesis of scheelite-type lead tungstate, PbWO
4
, from PbO and WO
3
for which Pb
3
WO
6
is identified as a previously unrecognized reaction intermediate. |
doi_str_mv | 10.1107/S1600576723011020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2922012885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2922012885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-460a7b2acee54d1bffebc1186c74e37699fd978a4399a73a7786f8e73fb358d43</originalsourceid><addsrcrecordid>eNplkE1Lw0AQhhdRsFZ_gLcFz9H9SLKJtyJ-QUGpFbyFye6sTWmzcXdz6Nk_bmIVBE_z8vAww7yEnHN2yTlTVy88ZyxTuRKSDUCwAzIZUTKywz_5mJyEsGaMD6qYkM_lCuli9rxcUNv7FjReU6AeusbQFUJs2ncKraHauc2YA2y7Df661DpPm5aGJvb0LfGwo0FDjOi_3dibBgN1lkbcdugh9h6TpjW9RkM9go6Na8MpObKwCXj2M6fk9e52efOQzJ_uH29m80QLJWOS5gxULYazmKWG19ZirTkvcq1SlCovS2tKVUAqyxKUBKWK3BaopK1lVphUTsnFfm_n3UePIVZrN_6xCZUohWBcFEU2WHxvae9C8Girzjdb8LuKs2rsuvrXtfwC3zhyhQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2922012885</pqid></control><display><type>article</type><title>The RAPTR furnace: a rapid heating and cooling sample furnace for in situ X-ray scattering studies of temperature-induced reactions</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Hu, Danrui ; Beauvais, Michelle L. ; Mullens, Bryce G. ; Sanchez Monserrate, Bryan A. ; Vornholt, Simon M. ; Kamm, Gabrielle E. ; Ferrari, John J. ; Chupas, Peter J. ; Chapman, Karena W.</creator><creatorcontrib>Hu, Danrui ; Beauvais, Michelle L. ; Mullens, Bryce G. ; Sanchez Monserrate, Bryan A. ; Vornholt, Simon M. ; Kamm, Gabrielle E. ; Ferrari, John J. ; Chupas, Peter J. ; Chapman, Karena W.</creatorcontrib><description>In situ
X-ray scattering provides valuable insights into the mechanisms and kinetics of reactions and structural transformations. For reactions and structural transformations primarily driven by temperature, and not coupled to chemical/electrochemical triggers, our ability to initiate and quench processes thermally is a practical limit for probing fast reactive phenomena. Meaningful quantitative analysis requires the dynamic phenomena to be triggered on fast time scales relative to the reaction/transformation kinetics. This article describes a new sample furnace, the Rapid-Actuating Pneumatic Thermal Reactor or RAPTR, for time-resolved
in situ
X-ray scattering studies initiated by temperature. The RAPTR quickly heats and cools samples by translating them into and out of a pre-heated hot zone. Using diffraction thermometry, it is shown that the samples can be heated/cooled in 10 s or less, with temperatures up to ∼1000°C being accessible. The application of the RAPTR furnace is demonstrated by exploring a fast solid-state reaction: the synthesis of scheelite-type lead tungstate, PbWO
4
, from PbO and WO
3
for which Pb
3
WO
6
is identified as a previously unrecognized reaction intermediate.</description><identifier>ISSN: 1600-5767</identifier><identifier>ISSN: 0021-8898</identifier><identifier>EISSN: 1600-5767</identifier><identifier>DOI: 10.1107/S1600576723011020</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Chemical synthesis ; Electrochemistry ; Kinetics ; Lead oxides ; Lead tungstates ; Reaction intermediates ; Scattering ; Scheelite ; Temperature ; Thermal reactors</subject><ispartof>Journal of applied crystallography, 2024-02, Vol.57 (1), p.88-93</ispartof><rights>Copyright Blackwell Publishing Ltd. Feb 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-460a7b2acee54d1bffebc1186c74e37699fd978a4399a73a7786f8e73fb358d43</citedby><cites>FETCH-LOGICAL-c273t-460a7b2acee54d1bffebc1186c74e37699fd978a4399a73a7786f8e73fb358d43</cites><orcidid>0000-0002-8725-5633 ; 0000-0001-9191-9968 ; 0000-0001-9490-3785 ; 0000-0002-0349-0848 ; 0000-0001-5149-6526</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hu, Danrui</creatorcontrib><creatorcontrib>Beauvais, Michelle L.</creatorcontrib><creatorcontrib>Mullens, Bryce G.</creatorcontrib><creatorcontrib>Sanchez Monserrate, Bryan A.</creatorcontrib><creatorcontrib>Vornholt, Simon M.</creatorcontrib><creatorcontrib>Kamm, Gabrielle E.</creatorcontrib><creatorcontrib>Ferrari, John J.</creatorcontrib><creatorcontrib>Chupas, Peter J.</creatorcontrib><creatorcontrib>Chapman, Karena W.</creatorcontrib><title>The RAPTR furnace: a rapid heating and cooling sample furnace for in situ X-ray scattering studies of temperature-induced reactions</title><title>Journal of applied crystallography</title><description>In situ
X-ray scattering provides valuable insights into the mechanisms and kinetics of reactions and structural transformations. For reactions and structural transformations primarily driven by temperature, and not coupled to chemical/electrochemical triggers, our ability to initiate and quench processes thermally is a practical limit for probing fast reactive phenomena. Meaningful quantitative analysis requires the dynamic phenomena to be triggered on fast time scales relative to the reaction/transformation kinetics. This article describes a new sample furnace, the Rapid-Actuating Pneumatic Thermal Reactor or RAPTR, for time-resolved
in situ
X-ray scattering studies initiated by temperature. The RAPTR quickly heats and cools samples by translating them into and out of a pre-heated hot zone. Using diffraction thermometry, it is shown that the samples can be heated/cooled in 10 s or less, with temperatures up to ∼1000°C being accessible. The application of the RAPTR furnace is demonstrated by exploring a fast solid-state reaction: the synthesis of scheelite-type lead tungstate, PbWO
4
, from PbO and WO
3
for which Pb
3
WO
6
is identified as a previously unrecognized reaction intermediate.</description><subject>Chemical synthesis</subject><subject>Electrochemistry</subject><subject>Kinetics</subject><subject>Lead oxides</subject><subject>Lead tungstates</subject><subject>Reaction intermediates</subject><subject>Scattering</subject><subject>Scheelite</subject><subject>Temperature</subject><subject>Thermal reactors</subject><issn>1600-5767</issn><issn>0021-8898</issn><issn>1600-5767</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplkE1Lw0AQhhdRsFZ_gLcFz9H9SLKJtyJ-QUGpFbyFye6sTWmzcXdz6Nk_bmIVBE_z8vAww7yEnHN2yTlTVy88ZyxTuRKSDUCwAzIZUTKywz_5mJyEsGaMD6qYkM_lCuli9rxcUNv7FjReU6AeusbQFUJs2ncKraHauc2YA2y7Df661DpPm5aGJvb0LfGwo0FDjOi_3dibBgN1lkbcdugh9h6TpjW9RkM9go6Na8MpObKwCXj2M6fk9e52efOQzJ_uH29m80QLJWOS5gxULYazmKWG19ZirTkvcq1SlCovS2tKVUAqyxKUBKWK3BaopK1lVphUTsnFfm_n3UePIVZrN_6xCZUohWBcFEU2WHxvae9C8Girzjdb8LuKs2rsuvrXtfwC3zhyhQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Hu, Danrui</creator><creator>Beauvais, Michelle L.</creator><creator>Mullens, Bryce G.</creator><creator>Sanchez Monserrate, Bryan A.</creator><creator>Vornholt, Simon M.</creator><creator>Kamm, Gabrielle E.</creator><creator>Ferrari, John J.</creator><creator>Chupas, Peter J.</creator><creator>Chapman, Karena W.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8725-5633</orcidid><orcidid>https://orcid.org/0000-0001-9191-9968</orcidid><orcidid>https://orcid.org/0000-0001-9490-3785</orcidid><orcidid>https://orcid.org/0000-0002-0349-0848</orcidid><orcidid>https://orcid.org/0000-0001-5149-6526</orcidid></search><sort><creationdate>20240201</creationdate><title>The RAPTR furnace: a rapid heating and cooling sample furnace for in situ X-ray scattering studies of temperature-induced reactions</title><author>Hu, Danrui ; Beauvais, Michelle L. ; Mullens, Bryce G. ; Sanchez Monserrate, Bryan A. ; Vornholt, Simon M. ; Kamm, Gabrielle E. ; Ferrari, John J. ; Chupas, Peter J. ; Chapman, Karena W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-460a7b2acee54d1bffebc1186c74e37699fd978a4399a73a7786f8e73fb358d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical synthesis</topic><topic>Electrochemistry</topic><topic>Kinetics</topic><topic>Lead oxides</topic><topic>Lead tungstates</topic><topic>Reaction intermediates</topic><topic>Scattering</topic><topic>Scheelite</topic><topic>Temperature</topic><topic>Thermal reactors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Danrui</creatorcontrib><creatorcontrib>Beauvais, Michelle L.</creatorcontrib><creatorcontrib>Mullens, Bryce G.</creatorcontrib><creatorcontrib>Sanchez Monserrate, Bryan A.</creatorcontrib><creatorcontrib>Vornholt, Simon M.</creatorcontrib><creatorcontrib>Kamm, Gabrielle E.</creatorcontrib><creatorcontrib>Ferrari, John J.</creatorcontrib><creatorcontrib>Chupas, Peter J.</creatorcontrib><creatorcontrib>Chapman, Karena W.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Danrui</au><au>Beauvais, Michelle L.</au><au>Mullens, Bryce G.</au><au>Sanchez Monserrate, Bryan A.</au><au>Vornholt, Simon M.</au><au>Kamm, Gabrielle E.</au><au>Ferrari, John J.</au><au>Chupas, Peter J.</au><au>Chapman, Karena W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The RAPTR furnace: a rapid heating and cooling sample furnace for in situ X-ray scattering studies of temperature-induced reactions</atitle><jtitle>Journal of applied crystallography</jtitle><date>2024-02-01</date><risdate>2024</risdate><volume>57</volume><issue>1</issue><spage>88</spage><epage>93</epage><pages>88-93</pages><issn>1600-5767</issn><issn>0021-8898</issn><eissn>1600-5767</eissn><abstract>In situ
X-ray scattering provides valuable insights into the mechanisms and kinetics of reactions and structural transformations. For reactions and structural transformations primarily driven by temperature, and not coupled to chemical/electrochemical triggers, our ability to initiate and quench processes thermally is a practical limit for probing fast reactive phenomena. Meaningful quantitative analysis requires the dynamic phenomena to be triggered on fast time scales relative to the reaction/transformation kinetics. This article describes a new sample furnace, the Rapid-Actuating Pneumatic Thermal Reactor or RAPTR, for time-resolved
in situ
X-ray scattering studies initiated by temperature. The RAPTR quickly heats and cools samples by translating them into and out of a pre-heated hot zone. Using diffraction thermometry, it is shown that the samples can be heated/cooled in 10 s or less, with temperatures up to ∼1000°C being accessible. The application of the RAPTR furnace is demonstrated by exploring a fast solid-state reaction: the synthesis of scheelite-type lead tungstate, PbWO
4
, from PbO and WO
3
for which Pb
3
WO
6
is identified as a previously unrecognized reaction intermediate.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1107/S1600576723011020</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8725-5633</orcidid><orcidid>https://orcid.org/0000-0001-9191-9968</orcidid><orcidid>https://orcid.org/0000-0001-9490-3785</orcidid><orcidid>https://orcid.org/0000-0002-0349-0848</orcidid><orcidid>https://orcid.org/0000-0001-5149-6526</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1600-5767 |
ispartof | Journal of applied crystallography, 2024-02, Vol.57 (1), p.88-93 |
issn | 1600-5767 0021-8898 1600-5767 |
language | eng |
recordid | cdi_proquest_journals_2922012885 |
source | Access via Wiley Online Library; Alma/SFX Local Collection |
subjects | Chemical synthesis Electrochemistry Kinetics Lead oxides Lead tungstates Reaction intermediates Scattering Scheelite Temperature Thermal reactors |
title | The RAPTR furnace: a rapid heating and cooling sample furnace for in situ X-ray scattering studies of temperature-induced reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20RAPTR%20furnace:%20a%20rapid%20heating%20and%20cooling%20sample%20furnace%20for%20in%20situ%20X-ray%20scattering%20studies%20of%20temperature-induced%20reactions&rft.jtitle=Journal%20of%20applied%20crystallography&rft.au=Hu,%20Danrui&rft.date=2024-02-01&rft.volume=57&rft.issue=1&rft.spage=88&rft.epage=93&rft.pages=88-93&rft.issn=1600-5767&rft.eissn=1600-5767&rft_id=info:doi/10.1107/S1600576723011020&rft_dat=%3Cproquest_cross%3E2922012885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2922012885&rft_id=info:pmid/&rfr_iscdi=true |