The sequence of prime gaps is graphic

Let us call a simple graph on n ⩾ 2 vertices a prime gap graph if its vertex degrees are 1 and the first n - 1 prime gaps. We show that such a graph exists for every large n , and in fact for every n ⩾ 2 if we assume the Riemann hypothesis. Moreover, an infinite sequence of prime gap graphs can be g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2024-02, Vol.388 (2), p.2195-2215
Hauptverfasser: Erdős, Péter L., Harcos, Gergely, Kharel, Shubha R., Maga, Péter, Mezei, Tamás Róbert, Toroczkai, Zoltán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let us call a simple graph on n ⩾ 2 vertices a prime gap graph if its vertex degrees are 1 and the first n - 1 prime gaps. We show that such a graph exists for every large n , and in fact for every n ⩾ 2 if we assume the Riemann hypothesis. Moreover, an infinite sequence of prime gap graphs can be generated by the so-called degree preserving growth process. This is the first time a naturally occurring infinite sequence of positive integers is identified as graphic. That is, we show the existence of an interesting, and so far unique, infinite combinatorial object.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-023-02574-1