Fusion of Time-of-Flight Based Sensors with Monocular Cameras for a Robotic Person Follower
Human-robot collaboration (HRC) is becoming increasingly important in advanced production systems, such as those used in industries and agriculture. This type of collaboration can contribute to productivity increase by reducing physical strain on humans, which can lead to reduced injuries and improv...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & robotic systems 2024-03, Vol.110 (1), p.30, Article 30 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 30 |
container_title | Journal of intelligent & robotic systems |
container_volume | 110 |
creator | Sarmento, José Neves dos Santos, Filipe Silva Aguiar, André Filipe, Vítor Valente, António |
description | Human-robot collaboration (HRC) is becoming increasingly important in advanced production systems, such as those used in industries and agriculture. This type of collaboration can contribute to productivity increase by reducing physical strain on humans, which can lead to reduced injuries and improved morale. One crucial aspect of HRC is the ability of the robot to follow a specific human operator safely. To address this challenge, a novel methodology is proposed that employs monocular vision and ultra-wideband (UWB) transceivers to determine the relative position of a human target with respect to the robot. UWB transceivers are capable of tracking humans with UWB transceivers but exhibit a significant angular error. To reduce this error, monocular cameras with Deep Learning object detection are used to detect humans. The reduction in angular error is achieved through sensor fusion, combining the outputs of both sensors using a histogram-based filter. This filter projects and intersects the measurements from both sources onto a 2D grid. By combining UWB and monocular vision, a remarkable 66.67% reduction in angular error compared to UWB localization alone is achieved. This approach demonstrates an average processing time of 0.0183s and an average localization error of 0.14 meters when tracking a person walking at an average speed of 0.21 m/s. This novel algorithm holds promise for enabling efficient and safe human-robot collaboration, providing a valuable contribution to the field of robotics. |
doi_str_mv | 10.1007/s10846-023-02037-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921593620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921593620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-b67ba0bb2820a42b2133fd06ea33ee6e64fa9d7d7fb1b4969dddddc867a83dca3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9XJx6bNURerwoqi68lDSNpkt0u30aRl8d-btYI3B4ZhmHnfYR6EzglcEoD8KhIouMiAspTA8owfoAmZ5anlIA_RBCQlaSTFMTqJcQMAspjJCXovh9j4DnuHl83WZt5lZdus1j2-0dHW-NV20YeId02_xo--89XQ6oDnemuDjtj5gDV-8cb3TYWfbYjJq_Rt63c2nKIjp9toz37rFL2Vt8v5fbZ4unuYXy-yihHeZ0bkRoMxtKCgOTWUMOZqEFYzZq2wgjst67zOnSGGSyHrfVSFyHXB6kqzKboYfT-C_xxs7NXGD6FLJxVNb88kE4nJFNFxqwo-xmCd-gjNVocvRUDtIaoRokoQ1Q9ExZOIjaKYlruVDX_W_6i-AZcudUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921593620</pqid></control><display><type>article</type><title>Fusion of Time-of-Flight Based Sensors with Monocular Cameras for a Robotic Person Follower</title><source>Springer Nature OA Free Journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sarmento, José ; Neves dos Santos, Filipe ; Silva Aguiar, André ; Filipe, Vítor ; Valente, António</creator><creatorcontrib>Sarmento, José ; Neves dos Santos, Filipe ; Silva Aguiar, André ; Filipe, Vítor ; Valente, António</creatorcontrib><description>Human-robot collaboration (HRC) is becoming increasingly important in advanced production systems, such as those used in industries and agriculture. This type of collaboration can contribute to productivity increase by reducing physical strain on humans, which can lead to reduced injuries and improved morale. One crucial aspect of HRC is the ability of the robot to follow a specific human operator safely. To address this challenge, a novel methodology is proposed that employs monocular vision and ultra-wideband (UWB) transceivers to determine the relative position of a human target with respect to the robot. UWB transceivers are capable of tracking humans with UWB transceivers but exhibit a significant angular error. To reduce this error, monocular cameras with Deep Learning object detection are used to detect humans. The reduction in angular error is achieved through sensor fusion, combining the outputs of both sensors using a histogram-based filter. This filter projects and intersects the measurements from both sources onto a 2D grid. By combining UWB and monocular vision, a remarkable 66.67% reduction in angular error compared to UWB localization alone is achieved. This approach demonstrates an average processing time of 0.0183s and an average localization error of 0.14 meters when tracking a person walking at an average speed of 0.21 m/s. This novel algorithm holds promise for enabling efficient and safe human-robot collaboration, providing a valuable contribution to the field of robotics.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-023-02037-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Artificial Intelligence ; Cameras ; Collaboration ; Control ; Cooperation ; Electrical Engineering ; Engineering ; Error reduction ; Injury prevention ; Localization ; Measuring instruments ; Mechanical Engineering ; Mechatronics ; Monocular vision ; Morale ; Multisensor fusion ; Object recognition ; Regular Paper ; Robotics ; Robots ; Sensors ; Tracking ; Ultrawideband</subject><ispartof>Journal of intelligent & robotic systems, 2024-03, Vol.110 (1), p.30, Article 30</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-b67ba0bb2820a42b2133fd06ea33ee6e64fa9d7d7fb1b4969dddddc867a83dca3</cites><orcidid>0000-0002-4332-9645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10846-023-02037-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10846-023-02037-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41119,41487,42188,42556,51318,51575</link.rule.ids></links><search><creatorcontrib>Sarmento, José</creatorcontrib><creatorcontrib>Neves dos Santos, Filipe</creatorcontrib><creatorcontrib>Silva Aguiar, André</creatorcontrib><creatorcontrib>Filipe, Vítor</creatorcontrib><creatorcontrib>Valente, António</creatorcontrib><title>Fusion of Time-of-Flight Based Sensors with Monocular Cameras for a Robotic Person Follower</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>Human-robot collaboration (HRC) is becoming increasingly important in advanced production systems, such as those used in industries and agriculture. This type of collaboration can contribute to productivity increase by reducing physical strain on humans, which can lead to reduced injuries and improved morale. One crucial aspect of HRC is the ability of the robot to follow a specific human operator safely. To address this challenge, a novel methodology is proposed that employs monocular vision and ultra-wideband (UWB) transceivers to determine the relative position of a human target with respect to the robot. UWB transceivers are capable of tracking humans with UWB transceivers but exhibit a significant angular error. To reduce this error, monocular cameras with Deep Learning object detection are used to detect humans. The reduction in angular error is achieved through sensor fusion, combining the outputs of both sensors using a histogram-based filter. This filter projects and intersects the measurements from both sources onto a 2D grid. By combining UWB and monocular vision, a remarkable 66.67% reduction in angular error compared to UWB localization alone is achieved. This approach demonstrates an average processing time of 0.0183s and an average localization error of 0.14 meters when tracking a person walking at an average speed of 0.21 m/s. This novel algorithm holds promise for enabling efficient and safe human-robot collaboration, providing a valuable contribution to the field of robotics.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Cameras</subject><subject>Collaboration</subject><subject>Control</subject><subject>Cooperation</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Error reduction</subject><subject>Injury prevention</subject><subject>Localization</subject><subject>Measuring instruments</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Monocular vision</subject><subject>Morale</subject><subject>Multisensor fusion</subject><subject>Object recognition</subject><subject>Regular Paper</subject><subject>Robotics</subject><subject>Robots</subject><subject>Sensors</subject><subject>Tracking</subject><subject>Ultrawideband</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9XJx6bNURerwoqi68lDSNpkt0u30aRl8d-btYI3B4ZhmHnfYR6EzglcEoD8KhIouMiAspTA8owfoAmZ5anlIA_RBCQlaSTFMTqJcQMAspjJCXovh9j4DnuHl83WZt5lZdus1j2-0dHW-NV20YeId02_xo--89XQ6oDnemuDjtj5gDV-8cb3TYWfbYjJq_Rt63c2nKIjp9toz37rFL2Vt8v5fbZ4unuYXy-yihHeZ0bkRoMxtKCgOTWUMOZqEFYzZq2wgjst67zOnSGGSyHrfVSFyHXB6kqzKboYfT-C_xxs7NXGD6FLJxVNb88kE4nJFNFxqwo-xmCd-gjNVocvRUDtIaoRokoQ1Q9ExZOIjaKYlruVDX_W_6i-AZcudUU</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Sarmento, José</creator><creator>Neves dos Santos, Filipe</creator><creator>Silva Aguiar, André</creator><creator>Filipe, Vítor</creator><creator>Valente, António</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4332-9645</orcidid></search><sort><creationdate>20240301</creationdate><title>Fusion of Time-of-Flight Based Sensors with Monocular Cameras for a Robotic Person Follower</title><author>Sarmento, José ; Neves dos Santos, Filipe ; Silva Aguiar, André ; Filipe, Vítor ; Valente, António</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-b67ba0bb2820a42b2133fd06ea33ee6e64fa9d7d7fb1b4969dddddc867a83dca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Cameras</topic><topic>Collaboration</topic><topic>Control</topic><topic>Cooperation</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Error reduction</topic><topic>Injury prevention</topic><topic>Localization</topic><topic>Measuring instruments</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Monocular vision</topic><topic>Morale</topic><topic>Multisensor fusion</topic><topic>Object recognition</topic><topic>Regular Paper</topic><topic>Robotics</topic><topic>Robots</topic><topic>Sensors</topic><topic>Tracking</topic><topic>Ultrawideband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarmento, José</creatorcontrib><creatorcontrib>Neves dos Santos, Filipe</creatorcontrib><creatorcontrib>Silva Aguiar, André</creatorcontrib><creatorcontrib>Filipe, Vítor</creatorcontrib><creatorcontrib>Valente, António</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarmento, José</au><au>Neves dos Santos, Filipe</au><au>Silva Aguiar, André</au><au>Filipe, Vítor</au><au>Valente, António</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fusion of Time-of-Flight Based Sensors with Monocular Cameras for a Robotic Person Follower</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2024-03-01</date><risdate>2024</risdate><volume>110</volume><issue>1</issue><spage>30</spage><pages>30-</pages><artnum>30</artnum><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>Human-robot collaboration (HRC) is becoming increasingly important in advanced production systems, such as those used in industries and agriculture. This type of collaboration can contribute to productivity increase by reducing physical strain on humans, which can lead to reduced injuries and improved morale. One crucial aspect of HRC is the ability of the robot to follow a specific human operator safely. To address this challenge, a novel methodology is proposed that employs monocular vision and ultra-wideband (UWB) transceivers to determine the relative position of a human target with respect to the robot. UWB transceivers are capable of tracking humans with UWB transceivers but exhibit a significant angular error. To reduce this error, monocular cameras with Deep Learning object detection are used to detect humans. The reduction in angular error is achieved through sensor fusion, combining the outputs of both sensors using a histogram-based filter. This filter projects and intersects the measurements from both sources onto a 2D grid. By combining UWB and monocular vision, a remarkable 66.67% reduction in angular error compared to UWB localization alone is achieved. This approach demonstrates an average processing time of 0.0183s and an average localization error of 0.14 meters when tracking a person walking at an average speed of 0.21 m/s. This novel algorithm holds promise for enabling efficient and safe human-robot collaboration, providing a valuable contribution to the field of robotics.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-023-02037-4</doi><orcidid>https://orcid.org/0000-0002-4332-9645</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2024-03, Vol.110 (1), p.30, Article 30 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_proquest_journals_2921593620 |
source | Springer Nature OA Free Journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Algorithms Artificial Intelligence Cameras Collaboration Control Cooperation Electrical Engineering Engineering Error reduction Injury prevention Localization Measuring instruments Mechanical Engineering Mechatronics Monocular vision Morale Multisensor fusion Object recognition Regular Paper Robotics Robots Sensors Tracking Ultrawideband |
title | Fusion of Time-of-Flight Based Sensors with Monocular Cameras for a Robotic Person Follower |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fusion%20of%20Time-of-Flight%20Based%20Sensors%20with%20Monocular%20Cameras%20for%20a%20Robotic%20Person%20Follower&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Sarmento,%20Jos%C3%A9&rft.date=2024-03-01&rft.volume=110&rft.issue=1&rft.spage=30&rft.pages=30-&rft.artnum=30&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-023-02037-4&rft_dat=%3Cproquest_cross%3E2921593620%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921593620&rft_id=info:pmid/&rfr_iscdi=true |