An effective approach for predicting daily stock trading decisions using fuzzy inference systems

To achieve success in stock trading, the ability to forecast future market behavior is crucial. Many professional traders favor traditional technical indicators as their preferred price projection method. However, making decisions based on various information sources can enhance the accuracy of mark...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft computing (Berlin, Germany) Germany), 2024-02, Vol.28 (4), p.3301-3319
Hauptverfasser: Venugopal, R., Veeramani, C., Muruganandan, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3319
container_issue 4
container_start_page 3301
container_title Soft computing (Berlin, Germany)
container_volume 28
creator Venugopal, R.
Veeramani, C.
Muruganandan, S.
description To achieve success in stock trading, the ability to forecast future market behavior is crucial. Many professional traders favor traditional technical indicators as their preferred price projection method. However, making decisions based on various information sources can enhance the accuracy of market predictions. To address this, we have developed fuzzy inference systems (FISs) that utilize fundamental and technical data as inputs, enabling daily trading decisions such as buy, hold, and sell signals. The results of our study indicate that the incorporation of fundamental financial data alongside technical data significantly enhances the accuracy of predicting future prices compared to systems relying solely on past price data. To further assess the effectiveness of our FISs, we conducted t -tests to compare their results with those of traditional technical trading strategies and the Buy–Hold strategy. The outcomes of the t -tests confirm that the proposed FISs outperform both the Buy–Hold strategy and traditional technical trading strategies, including RSI, MACD, and SO.
doi_str_mv 10.1007/s00500-023-09383-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921589930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921589930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-687c7d10386c8966b93a70998c3bc6db45a0955f65e0616169ba78759abd66f3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIlMIPcLLE2bCOYzs-VhUvqRKX3o3j2CWlTYKdIKVfj9sgcUN72N3RzKx2ELqlcE8B5EME4AAEMkZAsYIRdoZmNGeMyFyq89OcESlydomuYtwCZFRyNkPviwY7753t62-HTdeF1tgP7NuAu-CqOuHNBlem3o049q39xH0w1Qlzto5120Q8xOPuh8NhxHXjXXCNdTiOsXf7eI0uvNlFd_Pb52j99LhevpDV2_PrcrEiNgPoiSiklRUFVghbKCFKxYwEpQrLSiuqMucGFOdecAeCplKlkYXkypSVEJ7N0d1kmx74Glzs9bYdQpMu6kxllBdKMUisbGLZ0MYYnNddqPcmjJqCPgappyB1ClKfgtQsidgkioncbFz4s_5H9QN9v3ad</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921589930</pqid></control><display><type>article</type><title>An effective approach for predicting daily stock trading decisions using fuzzy inference systems</title><source>SpringerLink (Online service)</source><creator>Venugopal, R. ; Veeramani, C. ; Muruganandan, S.</creator><creatorcontrib>Venugopal, R. ; Veeramani, C. ; Muruganandan, S.</creatorcontrib><description>To achieve success in stock trading, the ability to forecast future market behavior is crucial. Many professional traders favor traditional technical indicators as their preferred price projection method. However, making decisions based on various information sources can enhance the accuracy of market predictions. To address this, we have developed fuzzy inference systems (FISs) that utilize fundamental and technical data as inputs, enabling daily trading decisions such as buy, hold, and sell signals. The results of our study indicate that the incorporation of fundamental financial data alongside technical data significantly enhances the accuracy of predicting future prices compared to systems relying solely on past price data. To further assess the effectiveness of our FISs, we conducted t -tests to compare their results with those of traditional technical trading strategies and the Buy–Hold strategy. The outcomes of the t -tests confirm that the proposed FISs outperform both the Buy–Hold strategy and traditional technical trading strategies, including RSI, MACD, and SO.</description><identifier>ISSN: 1432-7643</identifier><identifier>EISSN: 1433-7479</identifier><identifier>DOI: 10.1007/s00500-023-09383-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Computational Intelligence ; Control ; Decision making ; Decisions ; Engineering ; Fuzzy logic ; Fuzzy systems ; Genetic algorithms ; Inference ; Information sources ; Investments ; Investors ; Literature reviews ; Market prices ; Mathematical Logic and Foundations ; Mechatronics ; Robotics ; Securities markets ; Soft Computing in Decision Making and in Modeling in Economics ; Stock exchanges ; Stock prices ; System effectiveness ; Trends ; Volatility</subject><ispartof>Soft computing (Berlin, Germany), 2024-02, Vol.28 (4), p.3301-3319</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-687c7d10386c8966b93a70998c3bc6db45a0955f65e0616169ba78759abd66f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00500-023-09383-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00500-023-09383-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Venugopal, R.</creatorcontrib><creatorcontrib>Veeramani, C.</creatorcontrib><creatorcontrib>Muruganandan, S.</creatorcontrib><title>An effective approach for predicting daily stock trading decisions using fuzzy inference systems</title><title>Soft computing (Berlin, Germany)</title><addtitle>Soft Comput</addtitle><description>To achieve success in stock trading, the ability to forecast future market behavior is crucial. Many professional traders favor traditional technical indicators as their preferred price projection method. However, making decisions based on various information sources can enhance the accuracy of market predictions. To address this, we have developed fuzzy inference systems (FISs) that utilize fundamental and technical data as inputs, enabling daily trading decisions such as buy, hold, and sell signals. The results of our study indicate that the incorporation of fundamental financial data alongside technical data significantly enhances the accuracy of predicting future prices compared to systems relying solely on past price data. To further assess the effectiveness of our FISs, we conducted t -tests to compare their results with those of traditional technical trading strategies and the Buy–Hold strategy. The outcomes of the t -tests confirm that the proposed FISs outperform both the Buy–Hold strategy and traditional technical trading strategies, including RSI, MACD, and SO.</description><subject>Artificial Intelligence</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Decision making</subject><subject>Decisions</subject><subject>Engineering</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Genetic algorithms</subject><subject>Inference</subject><subject>Information sources</subject><subject>Investments</subject><subject>Investors</subject><subject>Literature reviews</subject><subject>Market prices</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Robotics</subject><subject>Securities markets</subject><subject>Soft Computing in Decision Making and in Modeling in Economics</subject><subject>Stock exchanges</subject><subject>Stock prices</subject><subject>System effectiveness</subject><subject>Trends</subject><subject>Volatility</subject><issn>1432-7643</issn><issn>1433-7479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIlMIPcLLE2bCOYzs-VhUvqRKX3o3j2CWlTYKdIKVfj9sgcUN72N3RzKx2ELqlcE8B5EME4AAEMkZAsYIRdoZmNGeMyFyq89OcESlydomuYtwCZFRyNkPviwY7753t62-HTdeF1tgP7NuAu-CqOuHNBlem3o049q39xH0w1Qlzto5120Q8xOPuh8NhxHXjXXCNdTiOsXf7eI0uvNlFd_Pb52j99LhevpDV2_PrcrEiNgPoiSiklRUFVghbKCFKxYwEpQrLSiuqMucGFOdecAeCplKlkYXkypSVEJ7N0d1kmx74Glzs9bYdQpMu6kxllBdKMUisbGLZ0MYYnNddqPcmjJqCPgappyB1ClKfgtQsidgkioncbFz4s_5H9QN9v3ad</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Venugopal, R.</creator><creator>Veeramani, C.</creator><creator>Muruganandan, S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20240201</creationdate><title>An effective approach for predicting daily stock trading decisions using fuzzy inference systems</title><author>Venugopal, R. ; Veeramani, C. ; Muruganandan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-687c7d10386c8966b93a70998c3bc6db45a0955f65e0616169ba78759abd66f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Decision making</topic><topic>Decisions</topic><topic>Engineering</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Genetic algorithms</topic><topic>Inference</topic><topic>Information sources</topic><topic>Investments</topic><topic>Investors</topic><topic>Literature reviews</topic><topic>Market prices</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Robotics</topic><topic>Securities markets</topic><topic>Soft Computing in Decision Making and in Modeling in Economics</topic><topic>Stock exchanges</topic><topic>Stock prices</topic><topic>System effectiveness</topic><topic>Trends</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venugopal, R.</creatorcontrib><creatorcontrib>Veeramani, C.</creatorcontrib><creatorcontrib>Muruganandan, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Soft computing (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venugopal, R.</au><au>Veeramani, C.</au><au>Muruganandan, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An effective approach for predicting daily stock trading decisions using fuzzy inference systems</atitle><jtitle>Soft computing (Berlin, Germany)</jtitle><stitle>Soft Comput</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>28</volume><issue>4</issue><spage>3301</spage><epage>3319</epage><pages>3301-3319</pages><issn>1432-7643</issn><eissn>1433-7479</eissn><abstract>To achieve success in stock trading, the ability to forecast future market behavior is crucial. Many professional traders favor traditional technical indicators as their preferred price projection method. However, making decisions based on various information sources can enhance the accuracy of market predictions. To address this, we have developed fuzzy inference systems (FISs) that utilize fundamental and technical data as inputs, enabling daily trading decisions such as buy, hold, and sell signals. The results of our study indicate that the incorporation of fundamental financial data alongside technical data significantly enhances the accuracy of predicting future prices compared to systems relying solely on past price data. To further assess the effectiveness of our FISs, we conducted t -tests to compare their results with those of traditional technical trading strategies and the Buy–Hold strategy. The outcomes of the t -tests confirm that the proposed FISs outperform both the Buy–Hold strategy and traditional technical trading strategies, including RSI, MACD, and SO.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00500-023-09383-3</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-7643
ispartof Soft computing (Berlin, Germany), 2024-02, Vol.28 (4), p.3301-3319
issn 1432-7643
1433-7479
language eng
recordid cdi_proquest_journals_2921589930
source SpringerLink (Online service)
subjects Artificial Intelligence
Computational Intelligence
Control
Decision making
Decisions
Engineering
Fuzzy logic
Fuzzy systems
Genetic algorithms
Inference
Information sources
Investments
Investors
Literature reviews
Market prices
Mathematical Logic and Foundations
Mechatronics
Robotics
Securities markets
Soft Computing in Decision Making and in Modeling in Economics
Stock exchanges
Stock prices
System effectiveness
Trends
Volatility
title An effective approach for predicting daily stock trading decisions using fuzzy inference systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20effective%20approach%20for%20predicting%20daily%20stock%20trading%20decisions%20using%20fuzzy%20inference%20systems&rft.jtitle=Soft%20computing%20(Berlin,%20Germany)&rft.au=Venugopal,%20R.&rft.date=2024-02-01&rft.volume=28&rft.issue=4&rft.spage=3301&rft.epage=3319&rft.pages=3301-3319&rft.issn=1432-7643&rft.eissn=1433-7479&rft_id=info:doi/10.1007/s00500-023-09383-3&rft_dat=%3Cproquest_cross%3E2921589930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921589930&rft_id=info:pmid/&rfr_iscdi=true