Vat photopolymerization printing of strong tear‐resistance and stretchable polyurethane elastomer for highly sensitive strain sensors

Herein, a polyurethane elastomer reinforced with SiO2 nanoparticles modified with 3‐(trimethoxysilyl) methacrylate was proposed, enabling outstanding tensile, tear resistance and suitability for a variety of complex applications. The introduction of modified SiO2 nanoparticles has augmented the cros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2024-02, Vol.45 (3), p.2615-2628
Hauptverfasser: Fei, Jianhua, Rong, Youjie, Du, Xia, Li, Huijie, Zhang, Xiaomin, Cui, Pengdi, Huang, Xiaobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2628
container_issue 3
container_start_page 2615
container_title Polymer composites
container_volume 45
creator Fei, Jianhua
Rong, Youjie
Du, Xia
Li, Huijie
Zhang, Xiaomin
Cui, Pengdi
Huang, Xiaobo
description Herein, a polyurethane elastomer reinforced with SiO2 nanoparticles modified with 3‐(trimethoxysilyl) methacrylate was proposed, enabling outstanding tensile, tear resistance and suitability for a variety of complex applications. The introduction of modified SiO2 nanoparticles has augmented the crosslink density among the molecular chains. The prioritized fracture of sacrificial bonds and chain entanglement can extend the local damage at the crack tip to the whole elastomer network. This effect might significantly improve the efficiency of energy dissipation, as well as prevent the crack propagation. The polyurethane elastomer, which consists of 0.5% modified nano‐SiO2, demonstrated a tear strength of 23.4 N/mm and superior mechanical stability, surpassing most commercial photocurable 3D printed polyurethane elastomers available commercially. Subsequently, polyurethane composite nano‐SiO2/LiTFSI (PSL) strain sensors with various flexible architectures were fabricated using DLP 3D printing technology by incorporating LiTFSI ionic liquid. The PSL strain sensor exhibited long‐term operational stability and high sensitivity, showing a considerable potential in the field of electronics. Overall, this study has opened up new opportunities for 3D printing of smart structured wearable devices with high performance. Highlights We constructed a SiO2 nanoparticle which can be used as a crosslinking agent of polyurethane molecular chain. The polyurethane elastomer doped with SiO2 nanoparticles is endowed with an excellent tear resistance. The LiTFSI composite PPU strain sensor constructed by DLP exhibited long‐term operational stability and high sensitivity. Conductive photosensitive polyurethane composite and PSL strain sensor.
doi_str_mv 10.1002/pc.27943
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921315067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921315067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2933-386d72bcbd7d1a794db0664defabb53afc5b8b3080e427d9867064a5cabc8a5e3</originalsourceid><addsrcrecordid>eNp1kLtOxDAQRS0EEstD4hMs0dAEHDtxkhKteElIUABtNHYmxCjYwfaCloqOlm_kS_CytFTzOnNHcwk5yNlxzhg_mfQxr5pCbJBZXhZ1xkrZbJIZ4xXPatFU22QnhKdE5lKKGfl8gEinwUU3uXH5jN68QzTO0skbG419pK6nIXqXsojgvz--PAYTIliNFGy3GmLUA6gR6UpjkcoBLFIcIUSXJGnvPB3M4zAuaUAbTDSvuNoDY38bzoc9stXDGHD_L-6S-_Ozu_lldn1zcTU_vc40b4TIRC27iiutuqrLIf3ZKSZl0WEPSpUCel2qWglWMyx41TW1rJgsoNSgdA0lil1yuNadvHtZYIjtk1t4m062vOG5yEsmq0QdrSntXQge-zbZ8Qx-2easXdncTrr9tTmh2Rp9MyMu_-Xa2_ma_wHRSoO7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921315067</pqid></control><display><type>article</type><title>Vat photopolymerization printing of strong tear‐resistance and stretchable polyurethane elastomer for highly sensitive strain sensors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fei, Jianhua ; Rong, Youjie ; Du, Xia ; Li, Huijie ; Zhang, Xiaomin ; Cui, Pengdi ; Huang, Xiaobo</creator><creatorcontrib>Fei, Jianhua ; Rong, Youjie ; Du, Xia ; Li, Huijie ; Zhang, Xiaomin ; Cui, Pengdi ; Huang, Xiaobo</creatorcontrib><description>Herein, a polyurethane elastomer reinforced with SiO2 nanoparticles modified with 3‐(trimethoxysilyl) methacrylate was proposed, enabling outstanding tensile, tear resistance and suitability for a variety of complex applications. The introduction of modified SiO2 nanoparticles has augmented the crosslink density among the molecular chains. The prioritized fracture of sacrificial bonds and chain entanglement can extend the local damage at the crack tip to the whole elastomer network. This effect might significantly improve the efficiency of energy dissipation, as well as prevent the crack propagation. The polyurethane elastomer, which consists of 0.5% modified nano‐SiO2, demonstrated a tear strength of 23.4 N/mm and superior mechanical stability, surpassing most commercial photocurable 3D printed polyurethane elastomers available commercially. Subsequently, polyurethane composite nano‐SiO2/LiTFSI (PSL) strain sensors with various flexible architectures were fabricated using DLP 3D printing technology by incorporating LiTFSI ionic liquid. The PSL strain sensor exhibited long‐term operational stability and high sensitivity, showing a considerable potential in the field of electronics. Overall, this study has opened up new opportunities for 3D printing of smart structured wearable devices with high performance. Highlights We constructed a SiO2 nanoparticle which can be used as a crosslinking agent of polyurethane molecular chain. The polyurethane elastomer doped with SiO2 nanoparticles is endowed with an excellent tear resistance. The LiTFSI composite PPU strain sensor constructed by DLP exhibited long‐term operational stability and high sensitivity. Conductive photosensitive polyurethane composite and PSL strain sensor.</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.27943</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>3-D printers ; Chain entanglement ; Crack propagation ; Crack tips ; Crosslinking ; Elastomers ; Energy dissipation ; Entanglement ; Ionic liquids ; Molecular chains ; Nanoparticles ; Photopolymerization ; polymer composite ; polyurethane ; Polyurethane resins ; Sensitivity ; Sensors ; Silicon dioxide ; Stability ; strain sensor ; Tear strength ; Three dimensional printing ; VP 3D printing ; Wearable technology</subject><ispartof>Polymer composites, 2024-02, Vol.45 (3), p.2615-2628</ispartof><rights>2023 Society of Plastics Engineers.</rights><rights>2024 Society of Plastics Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2933-386d72bcbd7d1a794db0664defabb53afc5b8b3080e427d9867064a5cabc8a5e3</citedby><cites>FETCH-LOGICAL-c2933-386d72bcbd7d1a794db0664defabb53afc5b8b3080e427d9867064a5cabc8a5e3</cites><orcidid>0000-0002-9189-5799</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.27943$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.27943$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Fei, Jianhua</creatorcontrib><creatorcontrib>Rong, Youjie</creatorcontrib><creatorcontrib>Du, Xia</creatorcontrib><creatorcontrib>Li, Huijie</creatorcontrib><creatorcontrib>Zhang, Xiaomin</creatorcontrib><creatorcontrib>Cui, Pengdi</creatorcontrib><creatorcontrib>Huang, Xiaobo</creatorcontrib><title>Vat photopolymerization printing of strong tear‐resistance and stretchable polyurethane elastomer for highly sensitive strain sensors</title><title>Polymer composites</title><description>Herein, a polyurethane elastomer reinforced with SiO2 nanoparticles modified with 3‐(trimethoxysilyl) methacrylate was proposed, enabling outstanding tensile, tear resistance and suitability for a variety of complex applications. The introduction of modified SiO2 nanoparticles has augmented the crosslink density among the molecular chains. The prioritized fracture of sacrificial bonds and chain entanglement can extend the local damage at the crack tip to the whole elastomer network. This effect might significantly improve the efficiency of energy dissipation, as well as prevent the crack propagation. The polyurethane elastomer, which consists of 0.5% modified nano‐SiO2, demonstrated a tear strength of 23.4 N/mm and superior mechanical stability, surpassing most commercial photocurable 3D printed polyurethane elastomers available commercially. Subsequently, polyurethane composite nano‐SiO2/LiTFSI (PSL) strain sensors with various flexible architectures were fabricated using DLP 3D printing technology by incorporating LiTFSI ionic liquid. The PSL strain sensor exhibited long‐term operational stability and high sensitivity, showing a considerable potential in the field of electronics. Overall, this study has opened up new opportunities for 3D printing of smart structured wearable devices with high performance. Highlights We constructed a SiO2 nanoparticle which can be used as a crosslinking agent of polyurethane molecular chain. The polyurethane elastomer doped with SiO2 nanoparticles is endowed with an excellent tear resistance. The LiTFSI composite PPU strain sensor constructed by DLP exhibited long‐term operational stability and high sensitivity. Conductive photosensitive polyurethane composite and PSL strain sensor.</description><subject>3-D printers</subject><subject>Chain entanglement</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>Crosslinking</subject><subject>Elastomers</subject><subject>Energy dissipation</subject><subject>Entanglement</subject><subject>Ionic liquids</subject><subject>Molecular chains</subject><subject>Nanoparticles</subject><subject>Photopolymerization</subject><subject>polymer composite</subject><subject>polyurethane</subject><subject>Polyurethane resins</subject><subject>Sensitivity</subject><subject>Sensors</subject><subject>Silicon dioxide</subject><subject>Stability</subject><subject>strain sensor</subject><subject>Tear strength</subject><subject>Three dimensional printing</subject><subject>VP 3D printing</subject><subject>Wearable technology</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOxDAQRS0EEstD4hMs0dAEHDtxkhKteElIUABtNHYmxCjYwfaCloqOlm_kS_CytFTzOnNHcwk5yNlxzhg_mfQxr5pCbJBZXhZ1xkrZbJIZ4xXPatFU22QnhKdE5lKKGfl8gEinwUU3uXH5jN68QzTO0skbG419pK6nIXqXsojgvz--PAYTIliNFGy3GmLUA6gR6UpjkcoBLFIcIUSXJGnvPB3M4zAuaUAbTDSvuNoDY38bzoc9stXDGHD_L-6S-_Ozu_lldn1zcTU_vc40b4TIRC27iiutuqrLIf3ZKSZl0WEPSpUCel2qWglWMyx41TW1rJgsoNSgdA0lil1yuNadvHtZYIjtk1t4m062vOG5yEsmq0QdrSntXQge-zbZ8Qx-2easXdncTrr9tTmh2Rp9MyMu_-Xa2_ma_wHRSoO7</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Fei, Jianhua</creator><creator>Rong, Youjie</creator><creator>Du, Xia</creator><creator>Li, Huijie</creator><creator>Zhang, Xiaomin</creator><creator>Cui, Pengdi</creator><creator>Huang, Xiaobo</creator><general>John Wiley &amp; Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9189-5799</orcidid></search><sort><creationdate>20240220</creationdate><title>Vat photopolymerization printing of strong tear‐resistance and stretchable polyurethane elastomer for highly sensitive strain sensors</title><author>Fei, Jianhua ; Rong, Youjie ; Du, Xia ; Li, Huijie ; Zhang, Xiaomin ; Cui, Pengdi ; Huang, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2933-386d72bcbd7d1a794db0664defabb53afc5b8b3080e427d9867064a5cabc8a5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3-D printers</topic><topic>Chain entanglement</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>Crosslinking</topic><topic>Elastomers</topic><topic>Energy dissipation</topic><topic>Entanglement</topic><topic>Ionic liquids</topic><topic>Molecular chains</topic><topic>Nanoparticles</topic><topic>Photopolymerization</topic><topic>polymer composite</topic><topic>polyurethane</topic><topic>Polyurethane resins</topic><topic>Sensitivity</topic><topic>Sensors</topic><topic>Silicon dioxide</topic><topic>Stability</topic><topic>strain sensor</topic><topic>Tear strength</topic><topic>Three dimensional printing</topic><topic>VP 3D printing</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fei, Jianhua</creatorcontrib><creatorcontrib>Rong, Youjie</creatorcontrib><creatorcontrib>Du, Xia</creatorcontrib><creatorcontrib>Li, Huijie</creatorcontrib><creatorcontrib>Zhang, Xiaomin</creatorcontrib><creatorcontrib>Cui, Pengdi</creatorcontrib><creatorcontrib>Huang, Xiaobo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fei, Jianhua</au><au>Rong, Youjie</au><au>Du, Xia</au><au>Li, Huijie</au><au>Zhang, Xiaomin</au><au>Cui, Pengdi</au><au>Huang, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vat photopolymerization printing of strong tear‐resistance and stretchable polyurethane elastomer for highly sensitive strain sensors</atitle><jtitle>Polymer composites</jtitle><date>2024-02-20</date><risdate>2024</risdate><volume>45</volume><issue>3</issue><spage>2615</spage><epage>2628</epage><pages>2615-2628</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><abstract>Herein, a polyurethane elastomer reinforced with SiO2 nanoparticles modified with 3‐(trimethoxysilyl) methacrylate was proposed, enabling outstanding tensile, tear resistance and suitability for a variety of complex applications. The introduction of modified SiO2 nanoparticles has augmented the crosslink density among the molecular chains. The prioritized fracture of sacrificial bonds and chain entanglement can extend the local damage at the crack tip to the whole elastomer network. This effect might significantly improve the efficiency of energy dissipation, as well as prevent the crack propagation. The polyurethane elastomer, which consists of 0.5% modified nano‐SiO2, demonstrated a tear strength of 23.4 N/mm and superior mechanical stability, surpassing most commercial photocurable 3D printed polyurethane elastomers available commercially. Subsequently, polyurethane composite nano‐SiO2/LiTFSI (PSL) strain sensors with various flexible architectures were fabricated using DLP 3D printing technology by incorporating LiTFSI ionic liquid. The PSL strain sensor exhibited long‐term operational stability and high sensitivity, showing a considerable potential in the field of electronics. Overall, this study has opened up new opportunities for 3D printing of smart structured wearable devices with high performance. Highlights We constructed a SiO2 nanoparticle which can be used as a crosslinking agent of polyurethane molecular chain. The polyurethane elastomer doped with SiO2 nanoparticles is endowed with an excellent tear resistance. The LiTFSI composite PPU strain sensor constructed by DLP exhibited long‐term operational stability and high sensitivity. Conductive photosensitive polyurethane composite and PSL strain sensor.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pc.27943</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9189-5799</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-8397
ispartof Polymer composites, 2024-02, Vol.45 (3), p.2615-2628
issn 0272-8397
1548-0569
language eng
recordid cdi_proquest_journals_2921315067
source Wiley Online Library Journals Frontfile Complete
subjects 3-D printers
Chain entanglement
Crack propagation
Crack tips
Crosslinking
Elastomers
Energy dissipation
Entanglement
Ionic liquids
Molecular chains
Nanoparticles
Photopolymerization
polymer composite
polyurethane
Polyurethane resins
Sensitivity
Sensors
Silicon dioxide
Stability
strain sensor
Tear strength
Three dimensional printing
VP 3D printing
Wearable technology
title Vat photopolymerization printing of strong tear‐resistance and stretchable polyurethane elastomer for highly sensitive strain sensors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A22%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vat%20photopolymerization%20printing%20of%20strong%20tear%E2%80%90resistance%20and%20stretchable%20polyurethane%20elastomer%20for%20highly%20sensitive%20strain%20sensors&rft.jtitle=Polymer%20composites&rft.au=Fei,%20Jianhua&rft.date=2024-02-20&rft.volume=45&rft.issue=3&rft.spage=2615&rft.epage=2628&rft.pages=2615-2628&rft.issn=0272-8397&rft.eissn=1548-0569&rft_id=info:doi/10.1002/pc.27943&rft_dat=%3Cproquest_cross%3E2921315067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921315067&rft_id=info:pmid/&rfr_iscdi=true