Quantum-Assisted Hilbert-Space Gaussian Process Regression

Gaussian processes are probabilistic models that are commonly used as functional priors in machine learning. Due to their probabilistic nature, they can be used to capture the prior information on the statistics of noise, smoothness of the functions, and training data uncertainty. However, their com...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Farooq, Ahmad, Galvis-Florez, Cristian A, Särkkä, Simo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Farooq, Ahmad
Galvis-Florez, Cristian A
Särkkä, Simo
description Gaussian processes are probabilistic models that are commonly used as functional priors in machine learning. Due to their probabilistic nature, they can be used to capture the prior information on the statistics of noise, smoothness of the functions, and training data uncertainty. However, their computational complexity quickly becomes intractable as the size of the data set grows. We propose a Hilbert space approximation-based quantum algorithm for Gaussian process regression to overcome this limitation. Our method consists of a combination of classical basis function expansion with quantum computing techniques of quantum principal component analysis, conditional rotations, and Hadamard and Swap tests. The quantum principal component analysis is used to estimate the eigenvalues while the conditional rotations and the Hadamard and Swap tests are employed to evaluate the posterior mean and variance of the Gaussian process. Our method provides polynomial computational complexity reduction over the classical method.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2921310326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921310326</sourcerecordid><originalsourceid>FETCH-proquest_journals_29213103263</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOwScA8mJrZdNRO3obS-xHiWlJjUneX87-ABO__D9I5aB1kqsFgATlhO1Ukool1AUOmObczIuprfYElmK-OCV7e4Yorj2pkF-NGkA4_gp-AaJ-AVfYaj1bsbGT9MR5r9O2fywv-0q0Qf_SUixbn0KbqAa1qC0khpK_d_1BdSyNu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921310326</pqid></control><display><type>article</type><title>Quantum-Assisted Hilbert-Space Gaussian Process Regression</title><source>Free E- Journals</source><creator>Farooq, Ahmad ; Galvis-Florez, Cristian A ; Särkkä, Simo</creator><creatorcontrib>Farooq, Ahmad ; Galvis-Florez, Cristian A ; Särkkä, Simo</creatorcontrib><description>Gaussian processes are probabilistic models that are commonly used as functional priors in machine learning. Due to their probabilistic nature, they can be used to capture the prior information on the statistics of noise, smoothness of the functions, and training data uncertainty. However, their computational complexity quickly becomes intractable as the size of the data set grows. We propose a Hilbert space approximation-based quantum algorithm for Gaussian process regression to overcome this limitation. Our method consists of a combination of classical basis function expansion with quantum computing techniques of quantum principal component analysis, conditional rotations, and Hadamard and Swap tests. The quantum principal component analysis is used to estimate the eigenvalues while the conditional rotations and the Hadamard and Swap tests are employed to evaluate the posterior mean and variance of the Gaussian process. Our method provides polynomial computational complexity reduction over the classical method.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Basis functions ; Complexity ; Eigenvalues ; Gaussian process ; Hilbert space ; Machine learning ; Polynomials ; Principal components analysis ; Probabilistic models ; Quantum computing ; Smoothness ; Statistical analysis</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Farooq, Ahmad</creatorcontrib><creatorcontrib>Galvis-Florez, Cristian A</creatorcontrib><creatorcontrib>Särkkä, Simo</creatorcontrib><title>Quantum-Assisted Hilbert-Space Gaussian Process Regression</title><title>arXiv.org</title><description>Gaussian processes are probabilistic models that are commonly used as functional priors in machine learning. Due to their probabilistic nature, they can be used to capture the prior information on the statistics of noise, smoothness of the functions, and training data uncertainty. However, their computational complexity quickly becomes intractable as the size of the data set grows. We propose a Hilbert space approximation-based quantum algorithm for Gaussian process regression to overcome this limitation. Our method consists of a combination of classical basis function expansion with quantum computing techniques of quantum principal component analysis, conditional rotations, and Hadamard and Swap tests. The quantum principal component analysis is used to estimate the eigenvalues while the conditional rotations and the Hadamard and Swap tests are employed to evaluate the posterior mean and variance of the Gaussian process. Our method provides polynomial computational complexity reduction over the classical method.</description><subject>Algorithms</subject><subject>Basis functions</subject><subject>Complexity</subject><subject>Eigenvalues</subject><subject>Gaussian process</subject><subject>Hilbert space</subject><subject>Machine learning</subject><subject>Polynomials</subject><subject>Principal components analysis</subject><subject>Probabilistic models</subject><subject>Quantum computing</subject><subject>Smoothness</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOwScA8mJrZdNRO3obS-xHiWlJjUneX87-ABO__D9I5aB1kqsFgATlhO1Ukool1AUOmObczIuprfYElmK-OCV7e4Yorj2pkF-NGkA4_gp-AaJ-AVfYaj1bsbGT9MR5r9O2fywv-0q0Qf_SUixbn0KbqAa1qC0khpK_d_1BdSyNu8</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Farooq, Ahmad</creator><creator>Galvis-Florez, Cristian A</creator><creator>Särkkä, Simo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240201</creationdate><title>Quantum-Assisted Hilbert-Space Gaussian Process Regression</title><author>Farooq, Ahmad ; Galvis-Florez, Cristian A ; Särkkä, Simo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29213103263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Basis functions</topic><topic>Complexity</topic><topic>Eigenvalues</topic><topic>Gaussian process</topic><topic>Hilbert space</topic><topic>Machine learning</topic><topic>Polynomials</topic><topic>Principal components analysis</topic><topic>Probabilistic models</topic><topic>Quantum computing</topic><topic>Smoothness</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Farooq, Ahmad</creatorcontrib><creatorcontrib>Galvis-Florez, Cristian A</creatorcontrib><creatorcontrib>Särkkä, Simo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farooq, Ahmad</au><au>Galvis-Florez, Cristian A</au><au>Särkkä, Simo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantum-Assisted Hilbert-Space Gaussian Process Regression</atitle><jtitle>arXiv.org</jtitle><date>2024-02-01</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Gaussian processes are probabilistic models that are commonly used as functional priors in machine learning. Due to their probabilistic nature, they can be used to capture the prior information on the statistics of noise, smoothness of the functions, and training data uncertainty. However, their computational complexity quickly becomes intractable as the size of the data set grows. We propose a Hilbert space approximation-based quantum algorithm for Gaussian process regression to overcome this limitation. Our method consists of a combination of classical basis function expansion with quantum computing techniques of quantum principal component analysis, conditional rotations, and Hadamard and Swap tests. The quantum principal component analysis is used to estimate the eigenvalues while the conditional rotations and the Hadamard and Swap tests are employed to evaluate the posterior mean and variance of the Gaussian process. Our method provides polynomial computational complexity reduction over the classical method.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-02
issn 2331-8422
language eng
recordid cdi_proquest_journals_2921310326
source Free E- Journals
subjects Algorithms
Basis functions
Complexity
Eigenvalues
Gaussian process
Hilbert space
Machine learning
Polynomials
Principal components analysis
Probabilistic models
Quantum computing
Smoothness
Statistical analysis
title Quantum-Assisted Hilbert-Space Gaussian Process Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantum-Assisted%20Hilbert-Space%20Gaussian%20Process%20Regression&rft.jtitle=arXiv.org&rft.au=Farooq,%20Ahmad&rft.date=2024-02-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2921310326%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921310326&rft_id=info:pmid/&rfr_iscdi=true