Quantum-Assisted Hilbert-Space Gaussian Process Regression
Gaussian processes are probabilistic models that are commonly used as functional priors in machine learning. Due to their probabilistic nature, they can be used to capture the prior information on the statistics of noise, smoothness of the functions, and training data uncertainty. However, their com...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Farooq, Ahmad Galvis-Florez, Cristian A Särkkä, Simo |
description | Gaussian processes are probabilistic models that are commonly used as functional priors in machine learning. Due to their probabilistic nature, they can be used to capture the prior information on the statistics of noise, smoothness of the functions, and training data uncertainty. However, their computational complexity quickly becomes intractable as the size of the data set grows. We propose a Hilbert space approximation-based quantum algorithm for Gaussian process regression to overcome this limitation. Our method consists of a combination of classical basis function expansion with quantum computing techniques of quantum principal component analysis, conditional rotations, and Hadamard and Swap tests. The quantum principal component analysis is used to estimate the eigenvalues while the conditional rotations and the Hadamard and Swap tests are employed to evaluate the posterior mean and variance of the Gaussian process. Our method provides polynomial computational complexity reduction over the classical method. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2921310326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921310326</sourcerecordid><originalsourceid>FETCH-proquest_journals_29213103263</originalsourceid><addsrcrecordid>eNqNyrsKwjAUgOEgCBbtOwScA8mJrZdNRO3obS-xHiWlJjUneX87-ABO__D9I5aB1kqsFgATlhO1Ukool1AUOmObczIuprfYElmK-OCV7e4Yorj2pkF-NGkA4_gp-AaJ-AVfYaj1bsbGT9MR5r9O2fywv-0q0Qf_SUixbn0KbqAa1qC0khpK_d_1BdSyNu8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921310326</pqid></control><display><type>article</type><title>Quantum-Assisted Hilbert-Space Gaussian Process Regression</title><source>Free E- Journals</source><creator>Farooq, Ahmad ; Galvis-Florez, Cristian A ; Särkkä, Simo</creator><creatorcontrib>Farooq, Ahmad ; Galvis-Florez, Cristian A ; Särkkä, Simo</creatorcontrib><description>Gaussian processes are probabilistic models that are commonly used as functional priors in machine learning. Due to their probabilistic nature, they can be used to capture the prior information on the statistics of noise, smoothness of the functions, and training data uncertainty. However, their computational complexity quickly becomes intractable as the size of the data set grows. We propose a Hilbert space approximation-based quantum algorithm for Gaussian process regression to overcome this limitation. Our method consists of a combination of classical basis function expansion with quantum computing techniques of quantum principal component analysis, conditional rotations, and Hadamard and Swap tests. The quantum principal component analysis is used to estimate the eigenvalues while the conditional rotations and the Hadamard and Swap tests are employed to evaluate the posterior mean and variance of the Gaussian process. Our method provides polynomial computational complexity reduction over the classical method.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Basis functions ; Complexity ; Eigenvalues ; Gaussian process ; Hilbert space ; Machine learning ; Polynomials ; Principal components analysis ; Probabilistic models ; Quantum computing ; Smoothness ; Statistical analysis</subject><ispartof>arXiv.org, 2024-02</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Farooq, Ahmad</creatorcontrib><creatorcontrib>Galvis-Florez, Cristian A</creatorcontrib><creatorcontrib>Särkkä, Simo</creatorcontrib><title>Quantum-Assisted Hilbert-Space Gaussian Process Regression</title><title>arXiv.org</title><description>Gaussian processes are probabilistic models that are commonly used as functional priors in machine learning. Due to their probabilistic nature, they can be used to capture the prior information on the statistics of noise, smoothness of the functions, and training data uncertainty. However, their computational complexity quickly becomes intractable as the size of the data set grows. We propose a Hilbert space approximation-based quantum algorithm for Gaussian process regression to overcome this limitation. Our method consists of a combination of classical basis function expansion with quantum computing techniques of quantum principal component analysis, conditional rotations, and Hadamard and Swap tests. The quantum principal component analysis is used to estimate the eigenvalues while the conditional rotations and the Hadamard and Swap tests are employed to evaluate the posterior mean and variance of the Gaussian process. Our method provides polynomial computational complexity reduction over the classical method.</description><subject>Algorithms</subject><subject>Basis functions</subject><subject>Complexity</subject><subject>Eigenvalues</subject><subject>Gaussian process</subject><subject>Hilbert space</subject><subject>Machine learning</subject><subject>Polynomials</subject><subject>Principal components analysis</subject><subject>Probabilistic models</subject><subject>Quantum computing</subject><subject>Smoothness</subject><subject>Statistical analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrsKwjAUgOEgCBbtOwScA8mJrZdNRO3obS-xHiWlJjUneX87-ABO__D9I5aB1kqsFgATlhO1Ukool1AUOmObczIuprfYElmK-OCV7e4Yorj2pkF-NGkA4_gp-AaJ-AVfYaj1bsbGT9MR5r9O2fywv-0q0Qf_SUixbn0KbqAa1qC0khpK_d_1BdSyNu8</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Farooq, Ahmad</creator><creator>Galvis-Florez, Cristian A</creator><creator>Särkkä, Simo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240201</creationdate><title>Quantum-Assisted Hilbert-Space Gaussian Process Regression</title><author>Farooq, Ahmad ; Galvis-Florez, Cristian A ; Särkkä, Simo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29213103263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Basis functions</topic><topic>Complexity</topic><topic>Eigenvalues</topic><topic>Gaussian process</topic><topic>Hilbert space</topic><topic>Machine learning</topic><topic>Polynomials</topic><topic>Principal components analysis</topic><topic>Probabilistic models</topic><topic>Quantum computing</topic><topic>Smoothness</topic><topic>Statistical analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Farooq, Ahmad</creatorcontrib><creatorcontrib>Galvis-Florez, Cristian A</creatorcontrib><creatorcontrib>Särkkä, Simo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farooq, Ahmad</au><au>Galvis-Florez, Cristian A</au><au>Särkkä, Simo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Quantum-Assisted Hilbert-Space Gaussian Process Regression</atitle><jtitle>arXiv.org</jtitle><date>2024-02-01</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Gaussian processes are probabilistic models that are commonly used as functional priors in machine learning. Due to their probabilistic nature, they can be used to capture the prior information on the statistics of noise, smoothness of the functions, and training data uncertainty. However, their computational complexity quickly becomes intractable as the size of the data set grows. We propose a Hilbert space approximation-based quantum algorithm for Gaussian process regression to overcome this limitation. Our method consists of a combination of classical basis function expansion with quantum computing techniques of quantum principal component analysis, conditional rotations, and Hadamard and Swap tests. The quantum principal component analysis is used to estimate the eigenvalues while the conditional rotations and the Hadamard and Swap tests are employed to evaluate the posterior mean and variance of the Gaussian process. Our method provides polynomial computational complexity reduction over the classical method.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-02 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2921310326 |
source | Free E- Journals |
subjects | Algorithms Basis functions Complexity Eigenvalues Gaussian process Hilbert space Machine learning Polynomials Principal components analysis Probabilistic models Quantum computing Smoothness Statistical analysis |
title | Quantum-Assisted Hilbert-Space Gaussian Process Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A15%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Quantum-Assisted%20Hilbert-Space%20Gaussian%20Process%20Regression&rft.jtitle=arXiv.org&rft.au=Farooq,%20Ahmad&rft.date=2024-02-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2921310326%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921310326&rft_id=info:pmid/&rfr_iscdi=true |