Optimization Design of 30 MJ/5 MW LIQHYSMES Toroidal D-Shaped Magnet

As the pivotal component of LIQuid Hydrogen and Superconducting Magnetic Energy Storage (LIQHYSMES) system, the electromagnetic design of SMES magnet is crucial to the economy, performance, and stability of the system. In this article, the toroidal D-shaped magnet within LIQHYSMES system is taken as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2024-08, Vol.34 (5), p.1-8
Hauptverfasser: Qiu, Yifeng, Ren, Li, Xu, Ying, Yang, Zhixing, Li, Hao, Li, Xianhao, Shi, Jing, Tang, Yuejin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 34
creator Qiu, Yifeng
Ren, Li
Xu, Ying
Yang, Zhixing
Li, Hao
Li, Xianhao
Shi, Jing
Tang, Yuejin
description As the pivotal component of LIQuid Hydrogen and Superconducting Magnetic Energy Storage (LIQHYSMES) system, the electromagnetic design of SMES magnet is crucial to the economy, performance, and stability of the system. In this article, the toroidal D-shaped magnet within LIQHYSMES system is taken as the main research object, and the multi-objective electromagnetic optimization design is conducted under the environment of LH 2 cooling, taking economy, energy storage capacity, AC loss, support structure, mechanical properties, and volume of the magnet into account. A hybrid optimization approach is employed, which combines NSGA-II with numerical method based on ϵ -constraint method, which averagely shifts the Pareto front forward by 7.31% compared to solely adopting NSGA-II conventionally. Ultimately, a design solution for 30 MJ/5 MW LIQHYSMES toroidal D-shaped magnet is obtained, accompanied by the development of a GUI programming tailored for large-scale toroidal HTS magnet designs.
doi_str_mv 10.1109/TASC.2024.3350592
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2921289279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10382697</ieee_id><sourcerecordid>2921289279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c161t-9023b82bf6c986cfc18a42abe675d0369a84045efa9b287fb36da6fa82d353ae3</originalsourceid><addsrcrecordid>eNpNkEFLwzAYhoMoOKc_QPAQ8Nwt-dKkyXFs6iYrQzoRTyFtk5mxtTXtDvrr7dgOnr738LzvBw9C95SMKCVqvJ5k0xEQiEeMccIVXKAB5VxGwCm_7DPhNJIA7BrdtO2WEBrLmA_QbNV0fu9_TefrCs9s6zcVrh1mBKevY47TD7xcvM0_s_Qpw-s61L40OzyLsi_T2BKnZlPZ7hZdObNr7d35DtH789N6Oo-Wq5fFdLKMCipoFykCLJeQO1EoKQpXUGliMLkVCS8JE8rImMTcOqNykInLmSiNcEZCyTgzlg3R42m3CfX3wbad3taHUPUvNSigIBUkqqfoiSpC3bbBOt0EvzfhR1Oij7L0UZY-ytJnWX3n4dTx1tp_PJMgVML-AOF5YoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921289279</pqid></control><display><type>article</type><title>Optimization Design of 30 MJ/5 MW LIQHYSMES Toroidal D-Shaped Magnet</title><source>IEEE Electronic Library (IEL)</source><creator>Qiu, Yifeng ; Ren, Li ; Xu, Ying ; Yang, Zhixing ; Li, Hao ; Li, Xianhao ; Shi, Jing ; Tang, Yuejin</creator><creatorcontrib>Qiu, Yifeng ; Ren, Li ; Xu, Ying ; Yang, Zhixing ; Li, Hao ; Li, Xianhao ; Shi, Jing ; Tang, Yuejin</creatorcontrib><description>As the pivotal component of LIQuid Hydrogen and Superconducting Magnetic Energy Storage (LIQHYSMES) system, the electromagnetic design of SMES magnet is crucial to the economy, performance, and stability of the system. In this article, the toroidal D-shaped magnet within LIQHYSMES system is taken as the main research object, and the multi-objective electromagnetic optimization design is conducted under the environment of LH 2 cooling, taking economy, energy storage capacity, AC loss, support structure, mechanical properties, and volume of the magnet into account. A hybrid optimization approach is employed, which combines NSGA-II with numerical method based on ϵ -constraint method, which averagely shifts the Pareto front forward by 7.31% compared to solely adopting NSGA-II conventionally. Ultimately, a design solution for 30 MJ/5 MW LIQHYSMES toroidal D-shaped magnet is obtained, accompanied by the development of a GUI programming tailored for large-scale toroidal HTS magnet designs.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3350592</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Design optimization ; Electromagnetic design ; Electromagnetics ; Energy storage ; HTS magnet ; LIQHYSMES ; Liquid hydrogen ; Magnetic energy storage ; Magnetic properties ; Magnetic resonance imaging ; Magnetomechanical effects ; Magnetosphere ; Mechanical properties ; Multiple objective analysis ; Numerical methods ; Perpendicular magnetic anisotropy ; Storage capacity ; Superconducting magnetic energy storage ; toroidal D-shaped magnet ; Toroidal magnetic fields</subject><ispartof>IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c161t-9023b82bf6c986cfc18a42abe675d0369a84045efa9b287fb36da6fa82d353ae3</cites><orcidid>0000-0001-8259-0603 ; 0009-0004-8634-5495 ; 0000-0002-1085-9463 ; 0000-0002-1343-4284 ; 0000-0001-5248-6004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10382697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10382697$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qiu, Yifeng</creatorcontrib><creatorcontrib>Ren, Li</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Yang, Zhixing</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Li, Xianhao</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Tang, Yuejin</creatorcontrib><title>Optimization Design of 30 MJ/5 MW LIQHYSMES Toroidal D-Shaped Magnet</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>As the pivotal component of LIQuid Hydrogen and Superconducting Magnetic Energy Storage (LIQHYSMES) system, the electromagnetic design of SMES magnet is crucial to the economy, performance, and stability of the system. In this article, the toroidal D-shaped magnet within LIQHYSMES system is taken as the main research object, and the multi-objective electromagnetic optimization design is conducted under the environment of LH 2 cooling, taking economy, energy storage capacity, AC loss, support structure, mechanical properties, and volume of the magnet into account. A hybrid optimization approach is employed, which combines NSGA-II with numerical method based on ϵ -constraint method, which averagely shifts the Pareto front forward by 7.31% compared to solely adopting NSGA-II conventionally. Ultimately, a design solution for 30 MJ/5 MW LIQHYSMES toroidal D-shaped magnet is obtained, accompanied by the development of a GUI programming tailored for large-scale toroidal HTS magnet designs.</description><subject>Design optimization</subject><subject>Electromagnetic design</subject><subject>Electromagnetics</subject><subject>Energy storage</subject><subject>HTS magnet</subject><subject>LIQHYSMES</subject><subject>Liquid hydrogen</subject><subject>Magnetic energy storage</subject><subject>Magnetic properties</subject><subject>Magnetic resonance imaging</subject><subject>Magnetomechanical effects</subject><subject>Magnetosphere</subject><subject>Mechanical properties</subject><subject>Multiple objective analysis</subject><subject>Numerical methods</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Storage capacity</subject><subject>Superconducting magnetic energy storage</subject><subject>toroidal D-shaped magnet</subject><subject>Toroidal magnetic fields</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAYhoMoOKc_QPAQ8Nwt-dKkyXFs6iYrQzoRTyFtk5mxtTXtDvrr7dgOnr738LzvBw9C95SMKCVqvJ5k0xEQiEeMccIVXKAB5VxGwCm_7DPhNJIA7BrdtO2WEBrLmA_QbNV0fu9_TefrCs9s6zcVrh1mBKevY47TD7xcvM0_s_Qpw-s61L40OzyLsi_T2BKnZlPZ7hZdObNr7d35DtH789N6Oo-Wq5fFdLKMCipoFykCLJeQO1EoKQpXUGliMLkVCS8JE8rImMTcOqNykInLmSiNcEZCyTgzlg3R42m3CfX3wbad3taHUPUvNSigIBUkqqfoiSpC3bbBOt0EvzfhR1Oij7L0UZY-ytJnWX3n4dTx1tp_PJMgVML-AOF5YoQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Qiu, Yifeng</creator><creator>Ren, Li</creator><creator>Xu, Ying</creator><creator>Yang, Zhixing</creator><creator>Li, Hao</creator><creator>Li, Xianhao</creator><creator>Shi, Jing</creator><creator>Tang, Yuejin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8259-0603</orcidid><orcidid>https://orcid.org/0009-0004-8634-5495</orcidid><orcidid>https://orcid.org/0000-0002-1085-9463</orcidid><orcidid>https://orcid.org/0000-0002-1343-4284</orcidid><orcidid>https://orcid.org/0000-0001-5248-6004</orcidid></search><sort><creationdate>20240801</creationdate><title>Optimization Design of 30 MJ/5 MW LIQHYSMES Toroidal D-Shaped Magnet</title><author>Qiu, Yifeng ; Ren, Li ; Xu, Ying ; Yang, Zhixing ; Li, Hao ; Li, Xianhao ; Shi, Jing ; Tang, Yuejin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c161t-9023b82bf6c986cfc18a42abe675d0369a84045efa9b287fb36da6fa82d353ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Design optimization</topic><topic>Electromagnetic design</topic><topic>Electromagnetics</topic><topic>Energy storage</topic><topic>HTS magnet</topic><topic>LIQHYSMES</topic><topic>Liquid hydrogen</topic><topic>Magnetic energy storage</topic><topic>Magnetic properties</topic><topic>Magnetic resonance imaging</topic><topic>Magnetomechanical effects</topic><topic>Magnetosphere</topic><topic>Mechanical properties</topic><topic>Multiple objective analysis</topic><topic>Numerical methods</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Storage capacity</topic><topic>Superconducting magnetic energy storage</topic><topic>toroidal D-shaped magnet</topic><topic>Toroidal magnetic fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Yifeng</creatorcontrib><creatorcontrib>Ren, Li</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Yang, Zhixing</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Li, Xianhao</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Tang, Yuejin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiu, Yifeng</au><au>Ren, Li</au><au>Xu, Ying</au><au>Yang, Zhixing</au><au>Li, Hao</au><au>Li, Xianhao</au><au>Shi, Jing</au><au>Tang, Yuejin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization Design of 30 MJ/5 MW LIQHYSMES Toroidal D-Shaped Magnet</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>As the pivotal component of LIQuid Hydrogen and Superconducting Magnetic Energy Storage (LIQHYSMES) system, the electromagnetic design of SMES magnet is crucial to the economy, performance, and stability of the system. In this article, the toroidal D-shaped magnet within LIQHYSMES system is taken as the main research object, and the multi-objective electromagnetic optimization design is conducted under the environment of LH 2 cooling, taking economy, energy storage capacity, AC loss, support structure, mechanical properties, and volume of the magnet into account. A hybrid optimization approach is employed, which combines NSGA-II with numerical method based on ϵ -constraint method, which averagely shifts the Pareto front forward by 7.31% compared to solely adopting NSGA-II conventionally. Ultimately, a design solution for 30 MJ/5 MW LIQHYSMES toroidal D-shaped magnet is obtained, accompanied by the development of a GUI programming tailored for large-scale toroidal HTS magnet designs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3350592</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8259-0603</orcidid><orcidid>https://orcid.org/0009-0004-8634-5495</orcidid><orcidid>https://orcid.org/0000-0002-1085-9463</orcidid><orcidid>https://orcid.org/0000-0002-1343-4284</orcidid><orcidid>https://orcid.org/0000-0001-5248-6004</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-8
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_2921289279
source IEEE Electronic Library (IEL)
subjects Design optimization
Electromagnetic design
Electromagnetics
Energy storage
HTS magnet
LIQHYSMES
Liquid hydrogen
Magnetic energy storage
Magnetic properties
Magnetic resonance imaging
Magnetomechanical effects
Magnetosphere
Mechanical properties
Multiple objective analysis
Numerical methods
Perpendicular magnetic anisotropy
Storage capacity
Superconducting magnetic energy storage
toroidal D-shaped magnet
Toroidal magnetic fields
title Optimization Design of 30 MJ/5 MW LIQHYSMES Toroidal D-Shaped Magnet
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20Design%20of%2030%20MJ/5%20MW%20LIQHYSMES%20Toroidal%20D-Shaped%20Magnet&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Qiu,%20Yifeng&rft.date=2024-08-01&rft.volume=34&rft.issue=5&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3350592&rft_dat=%3Cproquest_RIE%3E2921289279%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921289279&rft_id=info:pmid/&rft_ieee_id=10382697&rfr_iscdi=true