Optimization Design of 30 MJ/5 MW LIQHYSMES Toroidal D-Shaped Magnet
As the pivotal component of LIQuid Hydrogen and Superconducting Magnetic Energy Storage (LIQHYSMES) system, the electromagnetic design of SMES magnet is crucial to the economy, performance, and stability of the system. In this article, the toroidal D-shaped magnet within LIQHYSMES system is taken as...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2024-08, Vol.34 (5), p.1-8 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 5 |
container_start_page | 1 |
container_title | IEEE transactions on applied superconductivity |
container_volume | 34 |
creator | Qiu, Yifeng Ren, Li Xu, Ying Yang, Zhixing Li, Hao Li, Xianhao Shi, Jing Tang, Yuejin |
description | As the pivotal component of LIQuid Hydrogen and Superconducting Magnetic Energy Storage (LIQHYSMES) system, the electromagnetic design of SMES magnet is crucial to the economy, performance, and stability of the system. In this article, the toroidal D-shaped magnet within LIQHYSMES system is taken as the main research object, and the multi-objective electromagnetic optimization design is conducted under the environment of LH 2 cooling, taking economy, energy storage capacity, AC loss, support structure, mechanical properties, and volume of the magnet into account. A hybrid optimization approach is employed, which combines NSGA-II with numerical method based on ϵ -constraint method, which averagely shifts the Pareto front forward by 7.31% compared to solely adopting NSGA-II conventionally. Ultimately, a design solution for 30 MJ/5 MW LIQHYSMES toroidal D-shaped magnet is obtained, accompanied by the development of a GUI programming tailored for large-scale toroidal HTS magnet designs. |
doi_str_mv | 10.1109/TASC.2024.3350592 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2921289279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10382697</ieee_id><sourcerecordid>2921289279</sourcerecordid><originalsourceid>FETCH-LOGICAL-c161t-9023b82bf6c986cfc18a42abe675d0369a84045efa9b287fb36da6fa82d353ae3</originalsourceid><addsrcrecordid>eNpNkEFLwzAYhoMoOKc_QPAQ8Nwt-dKkyXFs6iYrQzoRTyFtk5mxtTXtDvrr7dgOnr738LzvBw9C95SMKCVqvJ5k0xEQiEeMccIVXKAB5VxGwCm_7DPhNJIA7BrdtO2WEBrLmA_QbNV0fu9_TefrCs9s6zcVrh1mBKevY47TD7xcvM0_s_Qpw-s61L40OzyLsi_T2BKnZlPZ7hZdObNr7d35DtH789N6Oo-Wq5fFdLKMCipoFykCLJeQO1EoKQpXUGliMLkVCS8JE8rImMTcOqNykInLmSiNcEZCyTgzlg3R42m3CfX3wbad3taHUPUvNSigIBUkqqfoiSpC3bbBOt0EvzfhR1Oij7L0UZY-ytJnWX3n4dTx1tp_PJMgVML-AOF5YoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921289279</pqid></control><display><type>article</type><title>Optimization Design of 30 MJ/5 MW LIQHYSMES Toroidal D-Shaped Magnet</title><source>IEEE Electronic Library (IEL)</source><creator>Qiu, Yifeng ; Ren, Li ; Xu, Ying ; Yang, Zhixing ; Li, Hao ; Li, Xianhao ; Shi, Jing ; Tang, Yuejin</creator><creatorcontrib>Qiu, Yifeng ; Ren, Li ; Xu, Ying ; Yang, Zhixing ; Li, Hao ; Li, Xianhao ; Shi, Jing ; Tang, Yuejin</creatorcontrib><description>As the pivotal component of LIQuid Hydrogen and Superconducting Magnetic Energy Storage (LIQHYSMES) system, the electromagnetic design of SMES magnet is crucial to the economy, performance, and stability of the system. In this article, the toroidal D-shaped magnet within LIQHYSMES system is taken as the main research object, and the multi-objective electromagnetic optimization design is conducted under the environment of LH 2 cooling, taking economy, energy storage capacity, AC loss, support structure, mechanical properties, and volume of the magnet into account. A hybrid optimization approach is employed, which combines NSGA-II with numerical method based on ϵ -constraint method, which averagely shifts the Pareto front forward by 7.31% compared to solely adopting NSGA-II conventionally. Ultimately, a design solution for 30 MJ/5 MW LIQHYSMES toroidal D-shaped magnet is obtained, accompanied by the development of a GUI programming tailored for large-scale toroidal HTS magnet designs.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3350592</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Design optimization ; Electromagnetic design ; Electromagnetics ; Energy storage ; HTS magnet ; LIQHYSMES ; Liquid hydrogen ; Magnetic energy storage ; Magnetic properties ; Magnetic resonance imaging ; Magnetomechanical effects ; Magnetosphere ; Mechanical properties ; Multiple objective analysis ; Numerical methods ; Perpendicular magnetic anisotropy ; Storage capacity ; Superconducting magnetic energy storage ; toroidal D-shaped magnet ; Toroidal magnetic fields</subject><ispartof>IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c161t-9023b82bf6c986cfc18a42abe675d0369a84045efa9b287fb36da6fa82d353ae3</cites><orcidid>0000-0001-8259-0603 ; 0009-0004-8634-5495 ; 0000-0002-1085-9463 ; 0000-0002-1343-4284 ; 0000-0001-5248-6004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10382697$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10382697$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qiu, Yifeng</creatorcontrib><creatorcontrib>Ren, Li</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Yang, Zhixing</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Li, Xianhao</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Tang, Yuejin</creatorcontrib><title>Optimization Design of 30 MJ/5 MW LIQHYSMES Toroidal D-Shaped Magnet</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>As the pivotal component of LIQuid Hydrogen and Superconducting Magnetic Energy Storage (LIQHYSMES) system, the electromagnetic design of SMES magnet is crucial to the economy, performance, and stability of the system. In this article, the toroidal D-shaped magnet within LIQHYSMES system is taken as the main research object, and the multi-objective electromagnetic optimization design is conducted under the environment of LH 2 cooling, taking economy, energy storage capacity, AC loss, support structure, mechanical properties, and volume of the magnet into account. A hybrid optimization approach is employed, which combines NSGA-II with numerical method based on ϵ -constraint method, which averagely shifts the Pareto front forward by 7.31% compared to solely adopting NSGA-II conventionally. Ultimately, a design solution for 30 MJ/5 MW LIQHYSMES toroidal D-shaped magnet is obtained, accompanied by the development of a GUI programming tailored for large-scale toroidal HTS magnet designs.</description><subject>Design optimization</subject><subject>Electromagnetic design</subject><subject>Electromagnetics</subject><subject>Energy storage</subject><subject>HTS magnet</subject><subject>LIQHYSMES</subject><subject>Liquid hydrogen</subject><subject>Magnetic energy storage</subject><subject>Magnetic properties</subject><subject>Magnetic resonance imaging</subject><subject>Magnetomechanical effects</subject><subject>Magnetosphere</subject><subject>Mechanical properties</subject><subject>Multiple objective analysis</subject><subject>Numerical methods</subject><subject>Perpendicular magnetic anisotropy</subject><subject>Storage capacity</subject><subject>Superconducting magnetic energy storage</subject><subject>toroidal D-shaped magnet</subject><subject>Toroidal magnetic fields</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAYhoMoOKc_QPAQ8Nwt-dKkyXFs6iYrQzoRTyFtk5mxtTXtDvrr7dgOnr738LzvBw9C95SMKCVqvJ5k0xEQiEeMccIVXKAB5VxGwCm_7DPhNJIA7BrdtO2WEBrLmA_QbNV0fu9_TefrCs9s6zcVrh1mBKevY47TD7xcvM0_s_Qpw-s61L40OzyLsi_T2BKnZlPZ7hZdObNr7d35DtH789N6Oo-Wq5fFdLKMCipoFykCLJeQO1EoKQpXUGliMLkVCS8JE8rImMTcOqNykInLmSiNcEZCyTgzlg3R42m3CfX3wbad3taHUPUvNSigIBUkqqfoiSpC3bbBOt0EvzfhR1Oij7L0UZY-ytJnWX3n4dTx1tp_PJMgVML-AOF5YoQ</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Qiu, Yifeng</creator><creator>Ren, Li</creator><creator>Xu, Ying</creator><creator>Yang, Zhixing</creator><creator>Li, Hao</creator><creator>Li, Xianhao</creator><creator>Shi, Jing</creator><creator>Tang, Yuejin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8259-0603</orcidid><orcidid>https://orcid.org/0009-0004-8634-5495</orcidid><orcidid>https://orcid.org/0000-0002-1085-9463</orcidid><orcidid>https://orcid.org/0000-0002-1343-4284</orcidid><orcidid>https://orcid.org/0000-0001-5248-6004</orcidid></search><sort><creationdate>20240801</creationdate><title>Optimization Design of 30 MJ/5 MW LIQHYSMES Toroidal D-Shaped Magnet</title><author>Qiu, Yifeng ; Ren, Li ; Xu, Ying ; Yang, Zhixing ; Li, Hao ; Li, Xianhao ; Shi, Jing ; Tang, Yuejin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c161t-9023b82bf6c986cfc18a42abe675d0369a84045efa9b287fb36da6fa82d353ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Design optimization</topic><topic>Electromagnetic design</topic><topic>Electromagnetics</topic><topic>Energy storage</topic><topic>HTS magnet</topic><topic>LIQHYSMES</topic><topic>Liquid hydrogen</topic><topic>Magnetic energy storage</topic><topic>Magnetic properties</topic><topic>Magnetic resonance imaging</topic><topic>Magnetomechanical effects</topic><topic>Magnetosphere</topic><topic>Mechanical properties</topic><topic>Multiple objective analysis</topic><topic>Numerical methods</topic><topic>Perpendicular magnetic anisotropy</topic><topic>Storage capacity</topic><topic>Superconducting magnetic energy storage</topic><topic>toroidal D-shaped magnet</topic><topic>Toroidal magnetic fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Yifeng</creatorcontrib><creatorcontrib>Ren, Li</creatorcontrib><creatorcontrib>Xu, Ying</creatorcontrib><creatorcontrib>Yang, Zhixing</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Li, Xianhao</creatorcontrib><creatorcontrib>Shi, Jing</creatorcontrib><creatorcontrib>Tang, Yuejin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiu, Yifeng</au><au>Ren, Li</au><au>Xu, Ying</au><au>Yang, Zhixing</au><au>Li, Hao</au><au>Li, Xianhao</au><au>Shi, Jing</au><au>Tang, Yuejin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization Design of 30 MJ/5 MW LIQHYSMES Toroidal D-Shaped Magnet</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>34</volume><issue>5</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>As the pivotal component of LIQuid Hydrogen and Superconducting Magnetic Energy Storage (LIQHYSMES) system, the electromagnetic design of SMES magnet is crucial to the economy, performance, and stability of the system. In this article, the toroidal D-shaped magnet within LIQHYSMES system is taken as the main research object, and the multi-objective electromagnetic optimization design is conducted under the environment of LH 2 cooling, taking economy, energy storage capacity, AC loss, support structure, mechanical properties, and volume of the magnet into account. A hybrid optimization approach is employed, which combines NSGA-II with numerical method based on ϵ -constraint method, which averagely shifts the Pareto front forward by 7.31% compared to solely adopting NSGA-II conventionally. Ultimately, a design solution for 30 MJ/5 MW LIQHYSMES toroidal D-shaped magnet is obtained, accompanied by the development of a GUI programming tailored for large-scale toroidal HTS magnet designs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3350592</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8259-0603</orcidid><orcidid>https://orcid.org/0009-0004-8634-5495</orcidid><orcidid>https://orcid.org/0000-0002-1085-9463</orcidid><orcidid>https://orcid.org/0000-0002-1343-4284</orcidid><orcidid>https://orcid.org/0000-0001-5248-6004</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8223 |
ispartof | IEEE transactions on applied superconductivity, 2024-08, Vol.34 (5), p.1-8 |
issn | 1051-8223 1558-2515 |
language | eng |
recordid | cdi_proquest_journals_2921289279 |
source | IEEE Electronic Library (IEL) |
subjects | Design optimization Electromagnetic design Electromagnetics Energy storage HTS magnet LIQHYSMES Liquid hydrogen Magnetic energy storage Magnetic properties Magnetic resonance imaging Magnetomechanical effects Magnetosphere Mechanical properties Multiple objective analysis Numerical methods Perpendicular magnetic anisotropy Storage capacity Superconducting magnetic energy storage toroidal D-shaped magnet Toroidal magnetic fields |
title | Optimization Design of 30 MJ/5 MW LIQHYSMES Toroidal D-Shaped Magnet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A48%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20Design%20of%2030%20MJ/5%20MW%20LIQHYSMES%20Toroidal%20D-Shaped%20Magnet&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Qiu,%20Yifeng&rft.date=2024-08-01&rft.volume=34&rft.issue=5&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3350592&rft_dat=%3Cproquest_RIE%3E2921289279%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921289279&rft_id=info:pmid/&rft_ieee_id=10382697&rfr_iscdi=true |