Tightly Coupled Integration of GNSS/UWB/VIO for Reliable and Seamless Positioning

The technology of autonomous vehicle (AV) is critical in nowadays Intelligent Transportation Systems. To achieve the fully automated operation for AVs, one important prerequisite is the accurate and reliable seamless localization covering complex outdoor-indoor scenarios. Although many solutions hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-02, Vol.25 (2), p.1-13
Hauptverfasser: Liu, Tianxia, Li, Bofeng, Guang'e Chen, Yang, Ling, Qiao, Jing, Chen, Wu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 2
container_start_page 1
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Liu, Tianxia
Li, Bofeng
Guang'e Chen
Yang, Ling
Qiao, Jing
Chen, Wu
description The technology of autonomous vehicle (AV) is critical in nowadays Intelligent Transportation Systems. To achieve the fully automated operation for AVs, one important prerequisite is the accurate and reliable seamless localization covering complex outdoor-indoor scenarios. Although many solutions have been proposed to support AV localization, it is still challenging inon achieving reliableglobally drift-free positioning in seamless urbanthe unknown outdoor-indoor environments. With the current on-board sensors such as( GNSS, IMU, LiDAR, and cameras, etc.), it is difficult for AVs to achieve accurate drift-free indoor positioning and smooth indoor-outdoor transition due to the lack of GNSS indoorssignals in indoor environments. Meanwhile, challenges remain in reliable navigation under obscured conditions. In this paper, we propose a tightly coupled integration algorithm of GNSS RTK, Ultra-Wide Band (UWB) and Visual Inertial Odometry (VIO) to enhance the accuracy and reliability for AVs seamless localization in challengingharsh environments. The UWB techniquesystem is innovatively incorporated into the AVs navigation system to extendextent the absolute positioning indoorsinto indoor environments. The stereo cameras are utilized to improve positioning continuity and enhance GNSS/UWB usability in outdoor-indoor obscured environments.The visual-inertial-odometry is utilized to enhance the positioning performance in the outdoor-indoor obscured environments. The proposed algorithm is evaluated over a real-world datasetsdataset in complex seamless environments. The results show that the proposed algorithm achieves 0.411m and 0.077m horizontal positioning accuracy in obscured outdoor and indoor environments, yielding 71.2 \% and 18.1 \% improvements compared with the traditional LC integration schemes, respectively. The results show that the incorporation of UWB can instantaneously correct the drifts of VIO in unknown indoor environments. The proposed TC integration algorithm achieves 71.2 \% and 18.1 \% improvements of horizontal positioning in outdoor and indoor tests, compared with the traditional LC integration, respectively.
doi_str_mv 10.1109/TITS.2023.3314836
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2921280840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10260266</ieee_id><sourcerecordid>2921280840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-97805e0f2caf5c0b4e4f8a6dd481a6d511a9078d23146d0e6cc39edcfac44ef33</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPa_Uq6OWrRGihWTavHZbuZrSkxW3fTQ_-9G9qDMDDD8L7z8SB0S8mIUpKPl8WyHDHC-IhzKiTPztCApqlMCKHZeV8zkeQkJZfoKoRt7IqU0gF6X9ab76454Knb7xqocNF2sPG6q12LncWz17Icr74ex5_FAlvn8Qc0tV43gHVb4RL0TwMh4DcX6t5St5trdGF1E-DmlIdo9fy0nL4k88WsmD7ME8Ny0SX5RJIUiGVG29SQtQBhpc6qSkgaUzxO52QiKxbfySoCmTE8h8pYbYQAy_kQ3R_n7rz73UPo1NbtfRtXKpYzyiSRgkQVPaqMdyF4sGrn6x_tD4oS1ZNTPTnVk1MnctFzd_TUAPBPz7IYGf8DKy1phw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921280840</pqid></control><display><type>article</type><title>Tightly Coupled Integration of GNSS/UWB/VIO for Reliable and Seamless Positioning</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Tianxia ; Li, Bofeng ; Guang'e Chen ; Yang, Ling ; Qiao, Jing ; Chen, Wu</creator><creatorcontrib>Liu, Tianxia ; Li, Bofeng ; Guang'e Chen ; Yang, Ling ; Qiao, Jing ; Chen, Wu</creatorcontrib><description><![CDATA[The technology of autonomous vehicle (AV) is critical in nowadays Intelligent Transportation Systems. To achieve the fully automated operation for AVs, one important prerequisite is the accurate and reliable seamless localization covering complex outdoor-indoor scenarios. Although many solutions have been proposed to support AV localization, it is still challenging inon achieving reliableglobally drift-free positioning in seamless urbanthe unknown outdoor-indoor environments. With the current on-board sensors such as( GNSS, IMU, LiDAR, and cameras, etc.), it is difficult for AVs to achieve accurate drift-free indoor positioning and smooth indoor-outdoor transition due to the lack of GNSS indoorssignals in indoor environments. Meanwhile, challenges remain in reliable navigation under obscured conditions. In this paper, we propose a tightly coupled integration algorithm of GNSS RTK, Ultra-Wide Band (UWB) and Visual Inertial Odometry (VIO) to enhance the accuracy and reliability for AVs seamless localization in challengingharsh environments. The UWB techniquesystem is innovatively incorporated into the AVs navigation system to extendextent the absolute positioning indoorsinto indoor environments. The stereo cameras are utilized to improve positioning continuity and enhance GNSS/UWB usability in outdoor-indoor obscured environments.The visual-inertial-odometry is utilized to enhance the positioning performance in the outdoor-indoor obscured environments. The proposed algorithm is evaluated over a real-world datasetsdataset in complex seamless environments. The results show that the proposed algorithm achieves 0.411m and 0.077m horizontal positioning accuracy in obscured outdoor and indoor environments, yielding 71.2<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> and 18.1<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> improvements compared with the traditional LC integration schemes, respectively. The results show that the incorporation of UWB can instantaneously correct the drifts of VIO in unknown indoor environments. The proposed TC integration algorithm achieves 71.2<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> and 18.1<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> improvements of horizontal positioning in outdoor and indoor tests, compared with the traditional LC integration, respectively.]]></description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3314836</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Cameras ; Drift ; Global navigation satellite system ; GNSS RTK ; Indoor environments ; Intelligent transportation systems ; Localization ; Location awareness ; Navigation ; Navigation systems ; Reliability ; seamless localization ; Sensors ; tightly coupled integration ; Urban environments ; Usability ; UWB ; VIO</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-02, Vol.25 (2), p.1-13</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-97805e0f2caf5c0b4e4f8a6dd481a6d511a9078d23146d0e6cc39edcfac44ef33</citedby><cites>FETCH-LOGICAL-c294t-97805e0f2caf5c0b4e4f8a6dd481a6d511a9078d23146d0e6cc39edcfac44ef33</cites><orcidid>0000-0001-7663-7743 ; 0000-0002-9553-4106 ; 0000-0003-4525-5878 ; 0000-0002-1787-5191 ; 0000-0002-9948-1347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10260266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10260266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, Tianxia</creatorcontrib><creatorcontrib>Li, Bofeng</creatorcontrib><creatorcontrib>Guang'e Chen</creatorcontrib><creatorcontrib>Yang, Ling</creatorcontrib><creatorcontrib>Qiao, Jing</creatorcontrib><creatorcontrib>Chen, Wu</creatorcontrib><title>Tightly Coupled Integration of GNSS/UWB/VIO for Reliable and Seamless Positioning</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description><![CDATA[The technology of autonomous vehicle (AV) is critical in nowadays Intelligent Transportation Systems. To achieve the fully automated operation for AVs, one important prerequisite is the accurate and reliable seamless localization covering complex outdoor-indoor scenarios. Although many solutions have been proposed to support AV localization, it is still challenging inon achieving reliableglobally drift-free positioning in seamless urbanthe unknown outdoor-indoor environments. With the current on-board sensors such as( GNSS, IMU, LiDAR, and cameras, etc.), it is difficult for AVs to achieve accurate drift-free indoor positioning and smooth indoor-outdoor transition due to the lack of GNSS indoorssignals in indoor environments. Meanwhile, challenges remain in reliable navigation under obscured conditions. In this paper, we propose a tightly coupled integration algorithm of GNSS RTK, Ultra-Wide Band (UWB) and Visual Inertial Odometry (VIO) to enhance the accuracy and reliability for AVs seamless localization in challengingharsh environments. The UWB techniquesystem is innovatively incorporated into the AVs navigation system to extendextent the absolute positioning indoorsinto indoor environments. The stereo cameras are utilized to improve positioning continuity and enhance GNSS/UWB usability in outdoor-indoor obscured environments.The visual-inertial-odometry is utilized to enhance the positioning performance in the outdoor-indoor obscured environments. The proposed algorithm is evaluated over a real-world datasetsdataset in complex seamless environments. The results show that the proposed algorithm achieves 0.411m and 0.077m horizontal positioning accuracy in obscured outdoor and indoor environments, yielding 71.2<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> and 18.1<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> improvements compared with the traditional LC integration schemes, respectively. The results show that the incorporation of UWB can instantaneously correct the drifts of VIO in unknown indoor environments. The proposed TC integration algorithm achieves 71.2<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> and 18.1<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> improvements of horizontal positioning in outdoor and indoor tests, compared with the traditional LC integration, respectively.]]></description><subject>Algorithms</subject><subject>Cameras</subject><subject>Drift</subject><subject>Global navigation satellite system</subject><subject>GNSS RTK</subject><subject>Indoor environments</subject><subject>Intelligent transportation systems</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Navigation</subject><subject>Navigation systems</subject><subject>Reliability</subject><subject>seamless localization</subject><subject>Sensors</subject><subject>tightly coupled integration</subject><subject>Urban environments</subject><subject>Usability</subject><subject>UWB</subject><subject>VIO</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPa_Uq6OWrRGihWTavHZbuZrSkxW3fTQ_-9G9qDMDDD8L7z8SB0S8mIUpKPl8WyHDHC-IhzKiTPztCApqlMCKHZeV8zkeQkJZfoKoRt7IqU0gF6X9ab76454Knb7xqocNF2sPG6q12LncWz17Icr74ex5_FAlvn8Qc0tV43gHVb4RL0TwMh4DcX6t5St5trdGF1E-DmlIdo9fy0nL4k88WsmD7ME8Ny0SX5RJIUiGVG29SQtQBhpc6qSkgaUzxO52QiKxbfySoCmTE8h8pYbYQAy_kQ3R_n7rz73UPo1NbtfRtXKpYzyiSRgkQVPaqMdyF4sGrn6x_tD4oS1ZNTPTnVk1MnctFzd_TUAPBPz7IYGf8DKy1phw</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Liu, Tianxia</creator><creator>Li, Bofeng</creator><creator>Guang'e Chen</creator><creator>Yang, Ling</creator><creator>Qiao, Jing</creator><creator>Chen, Wu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7663-7743</orcidid><orcidid>https://orcid.org/0000-0002-9553-4106</orcidid><orcidid>https://orcid.org/0000-0003-4525-5878</orcidid><orcidid>https://orcid.org/0000-0002-1787-5191</orcidid><orcidid>https://orcid.org/0000-0002-9948-1347</orcidid></search><sort><creationdate>20240201</creationdate><title>Tightly Coupled Integration of GNSS/UWB/VIO for Reliable and Seamless Positioning</title><author>Liu, Tianxia ; Li, Bofeng ; Guang'e Chen ; Yang, Ling ; Qiao, Jing ; Chen, Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-97805e0f2caf5c0b4e4f8a6dd481a6d511a9078d23146d0e6cc39edcfac44ef33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Cameras</topic><topic>Drift</topic><topic>Global navigation satellite system</topic><topic>GNSS RTK</topic><topic>Indoor environments</topic><topic>Intelligent transportation systems</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Navigation</topic><topic>Navigation systems</topic><topic>Reliability</topic><topic>seamless localization</topic><topic>Sensors</topic><topic>tightly coupled integration</topic><topic>Urban environments</topic><topic>Usability</topic><topic>UWB</topic><topic>VIO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Tianxia</creatorcontrib><creatorcontrib>Li, Bofeng</creatorcontrib><creatorcontrib>Guang'e Chen</creatorcontrib><creatorcontrib>Yang, Ling</creatorcontrib><creatorcontrib>Qiao, Jing</creatorcontrib><creatorcontrib>Chen, Wu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Tianxia</au><au>Li, Bofeng</au><au>Guang'e Chen</au><au>Yang, Ling</au><au>Qiao, Jing</au><au>Chen, Wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tightly Coupled Integration of GNSS/UWB/VIO for Reliable and Seamless Positioning</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>25</volume><issue>2</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract><![CDATA[The technology of autonomous vehicle (AV) is critical in nowadays Intelligent Transportation Systems. To achieve the fully automated operation for AVs, one important prerequisite is the accurate and reliable seamless localization covering complex outdoor-indoor scenarios. Although many solutions have been proposed to support AV localization, it is still challenging inon achieving reliableglobally drift-free positioning in seamless urbanthe unknown outdoor-indoor environments. With the current on-board sensors such as( GNSS, IMU, LiDAR, and cameras, etc.), it is difficult for AVs to achieve accurate drift-free indoor positioning and smooth indoor-outdoor transition due to the lack of GNSS indoorssignals in indoor environments. Meanwhile, challenges remain in reliable navigation under obscured conditions. In this paper, we propose a tightly coupled integration algorithm of GNSS RTK, Ultra-Wide Band (UWB) and Visual Inertial Odometry (VIO) to enhance the accuracy and reliability for AVs seamless localization in challengingharsh environments. The UWB techniquesystem is innovatively incorporated into the AVs navigation system to extendextent the absolute positioning indoorsinto indoor environments. The stereo cameras are utilized to improve positioning continuity and enhance GNSS/UWB usability in outdoor-indoor obscured environments.The visual-inertial-odometry is utilized to enhance the positioning performance in the outdoor-indoor obscured environments. The proposed algorithm is evaluated over a real-world datasetsdataset in complex seamless environments. The results show that the proposed algorithm achieves 0.411m and 0.077m horizontal positioning accuracy in obscured outdoor and indoor environments, yielding 71.2<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> and 18.1<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> improvements compared with the traditional LC integration schemes, respectively. The results show that the incorporation of UWB can instantaneously correct the drifts of VIO in unknown indoor environments. The proposed TC integration algorithm achieves 71.2<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> and 18.1<inline-formula> <tex-math notation="LaTeX">\%</tex-math> </inline-formula> improvements of horizontal positioning in outdoor and indoor tests, compared with the traditional LC integration, respectively.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3314836</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7663-7743</orcidid><orcidid>https://orcid.org/0000-0002-9553-4106</orcidid><orcidid>https://orcid.org/0000-0003-4525-5878</orcidid><orcidid>https://orcid.org/0000-0002-1787-5191</orcidid><orcidid>https://orcid.org/0000-0002-9948-1347</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-02, Vol.25 (2), p.1-13
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2921280840
source IEEE Electronic Library (IEL)
subjects Algorithms
Cameras
Drift
Global navigation satellite system
GNSS RTK
Indoor environments
Intelligent transportation systems
Localization
Location awareness
Navigation
Navigation systems
Reliability
seamless localization
Sensors
tightly coupled integration
Urban environments
Usability
UWB
VIO
title Tightly Coupled Integration of GNSS/UWB/VIO for Reliable and Seamless Positioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T14%3A00%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tightly%20Coupled%20Integration%20of%20GNSS/UWB/VIO%20for%20Reliable%20and%20Seamless%20Positioning&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Liu,%20Tianxia&rft.date=2024-02-01&rft.volume=25&rft.issue=2&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3314836&rft_dat=%3Cproquest_RIE%3E2921280840%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921280840&rft_id=info:pmid/&rft_ieee_id=10260266&rfr_iscdi=true