Distributionally Robust Optimization Based Model Predictive Control for Stochastic Mixed Traffic Flow
In this paper, we investigate a mixed-traffic control problem considering uncertainties of HDVs flow. The challenges mainly lie in modeling the stochastic characteristics of mixed-traffic flow and developing less-conservative algorithm to deal with the uncertainties. To tackle the problem, we propos...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2024-02, Vol.25 (2), p.1-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 2 |
container_start_page | 1 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 25 |
creator | Gao, Fengkun Yang, Bo Chen, Cailian Guan, Xinping Tang, Yuliang |
description | In this paper, we investigate a mixed-traffic control problem considering uncertainties of HDVs flow. The challenges mainly lie in modeling the stochastic characteristics of mixed-traffic flow and developing less-conservative algorithm to deal with the uncertainties. To tackle the problem, we propose a stochastic model predictive control (MPC) strategy based on data-driven distributionally robust optimization (DRO). First, a stochastic mixed-traffic model, extended from cell transmission model, is proposed to describe the traffic dynamics. Then, utilizing historical traffic data, an incremental principal component analysis (IPCA) based method is given to construct ambiguity set and incorporate generalized moment information of uncertainties. Based on the above predictive model and ambiguity set, a DRO-based MPC problem is formulated and further converted into an equivalent dual form for efficient solutions, i.e., ramp metering and variable speed limit control. Finally, simulation results based on real data collected in Shanghai, China, demonstrate that our proposed strategy can significantly reduce traffic congestion, achieving 5.74 \% total travel time reduction compared to robust MPC. |
doi_str_mv | 10.1109/TITS.2023.3315955 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2921280247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10265770</ieee_id><sourcerecordid>2921280247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-1ba15ba496bd1723faee27e263a7b52c4667e4e3a27621fa5ad053a5036e400f3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmabo1arhZaKjedlk0xwS9qtuxu1_noT2oOnmXl5ZmAehK4pGVFKsrt8lq9GjDA-4pzKTMoTNKBSjhNCaHra90wkGZHkHF2EsO5SISkdIHi0IXpbtNG6rWmaPX5zRRsiXu6i3dhf0-f4wQSo8MJV0OBXD5Uto_0CPHHb6F2Da-fxKrryw4RoS7ywPx2de1PX3TRt3PclOqtNE-DqWIfoffqUT16S-fJ5NrmfJyXLRExoYagsjMjSoqKK8doAMAUs5UYVkpUiTRUI4IaplNHaSFMRyY0kPAVBSM2H6PZwd-fdZwsh6rVrffdX0CxjlI0JE6qj6IEqvQvBQ6133m6M32tKdG9T9zZ1b1MfbXY7N4cdCwD_eJZKpQj_A8vYccI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921280247</pqid></control><display><type>article</type><title>Distributionally Robust Optimization Based Model Predictive Control for Stochastic Mixed Traffic Flow</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Fengkun ; Yang, Bo ; Chen, Cailian ; Guan, Xinping ; Tang, Yuliang</creator><creatorcontrib>Gao, Fengkun ; Yang, Bo ; Chen, Cailian ; Guan, Xinping ; Tang, Yuliang</creatorcontrib><description>In this paper, we investigate a mixed-traffic control problem considering uncertainties of HDVs flow. The challenges mainly lie in modeling the stochastic characteristics of mixed-traffic flow and developing less-conservative algorithm to deal with the uncertainties. To tackle the problem, we propose a stochastic model predictive control (MPC) strategy based on data-driven distributionally robust optimization (DRO). First, a stochastic mixed-traffic model, extended from cell transmission model, is proposed to describe the traffic dynamics. Then, utilizing historical traffic data, an incremental principal component analysis (IPCA) based method is given to construct ambiguity set and incorporate generalized moment information of uncertainties. Based on the above predictive model and ambiguity set, a DRO-based MPC problem is formulated and further converted into an equivalent dual form for efficient solutions, i.e., ramp metering and variable speed limit control. Finally, simulation results based on real data collected in Shanghai, China, demonstrate that our proposed strategy can significantly reduce traffic congestion, achieving <inline-formula> <tex-math notation="LaTeX">5.74 \%</tex-math> </inline-formula> total travel time reduction compared to robust MPC.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3315955</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Ambiguity ; Computer architecture ; data-driven distributionally robust optimization ; Mathematical models ; Mixed-traffic flow ; Optimization ; Prediction models ; Predictive control ; Predictive models ; Principal components analysis ; ramp metering ; Roads ; Robustness ; Speed limits ; stochastic model predictive control ; Stochastic models ; Stochastic processes ; Traffic congestion ; Traffic control ; Traffic flow ; Traffic information ; Traffic models ; Travel time ; Uncertainty ; variable speed limit control</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-02, Vol.25 (2), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-1ba15ba496bd1723faee27e263a7b52c4667e4e3a27621fa5ad053a5036e400f3</citedby><cites>FETCH-LOGICAL-c294t-1ba15ba496bd1723faee27e263a7b52c4667e4e3a27621fa5ad053a5036e400f3</cites><orcidid>0000-0002-5923-9011 ; 0000-0003-1858-8538 ; 0000-0001-9268-8436 ; 0000-0001-6533-8713 ; 0000-0002-4548-6863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10265770$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10265770$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Fengkun</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Chen, Cailian</creatorcontrib><creatorcontrib>Guan, Xinping</creatorcontrib><creatorcontrib>Tang, Yuliang</creatorcontrib><title>Distributionally Robust Optimization Based Model Predictive Control for Stochastic Mixed Traffic Flow</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>In this paper, we investigate a mixed-traffic control problem considering uncertainties of HDVs flow. The challenges mainly lie in modeling the stochastic characteristics of mixed-traffic flow and developing less-conservative algorithm to deal with the uncertainties. To tackle the problem, we propose a stochastic model predictive control (MPC) strategy based on data-driven distributionally robust optimization (DRO). First, a stochastic mixed-traffic model, extended from cell transmission model, is proposed to describe the traffic dynamics. Then, utilizing historical traffic data, an incremental principal component analysis (IPCA) based method is given to construct ambiguity set and incorporate generalized moment information of uncertainties. Based on the above predictive model and ambiguity set, a DRO-based MPC problem is formulated and further converted into an equivalent dual form for efficient solutions, i.e., ramp metering and variable speed limit control. Finally, simulation results based on real data collected in Shanghai, China, demonstrate that our proposed strategy can significantly reduce traffic congestion, achieving <inline-formula> <tex-math notation="LaTeX">5.74 \%</tex-math> </inline-formula> total travel time reduction compared to robust MPC.</description><subject>Algorithms</subject><subject>Ambiguity</subject><subject>Computer architecture</subject><subject>data-driven distributionally robust optimization</subject><subject>Mathematical models</subject><subject>Mixed-traffic flow</subject><subject>Optimization</subject><subject>Prediction models</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Principal components analysis</subject><subject>ramp metering</subject><subject>Roads</subject><subject>Robustness</subject><subject>Speed limits</subject><subject>stochastic model predictive control</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Traffic congestion</subject><subject>Traffic control</subject><subject>Traffic flow</subject><subject>Traffic information</subject><subject>Traffic models</subject><subject>Travel time</subject><subject>Uncertainty</subject><subject>variable speed limit control</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmabo1arhZaKjedlk0xwS9qtuxu1_noT2oOnmXl5ZmAehK4pGVFKsrt8lq9GjDA-4pzKTMoTNKBSjhNCaHra90wkGZHkHF2EsO5SISkdIHi0IXpbtNG6rWmaPX5zRRsiXu6i3dhf0-f4wQSo8MJV0OBXD5Uto_0CPHHb6F2Da-fxKrryw4RoS7ywPx2de1PX3TRt3PclOqtNE-DqWIfoffqUT16S-fJ5NrmfJyXLRExoYagsjMjSoqKK8doAMAUs5UYVkpUiTRUI4IaplNHaSFMRyY0kPAVBSM2H6PZwd-fdZwsh6rVrffdX0CxjlI0JE6qj6IEqvQvBQ6133m6M32tKdG9T9zZ1b1MfbXY7N4cdCwD_eJZKpQj_A8vYccI</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Gao, Fengkun</creator><creator>Yang, Bo</creator><creator>Chen, Cailian</creator><creator>Guan, Xinping</creator><creator>Tang, Yuliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5923-9011</orcidid><orcidid>https://orcid.org/0000-0003-1858-8538</orcidid><orcidid>https://orcid.org/0000-0001-9268-8436</orcidid><orcidid>https://orcid.org/0000-0001-6533-8713</orcidid><orcidid>https://orcid.org/0000-0002-4548-6863</orcidid></search><sort><creationdate>20240201</creationdate><title>Distributionally Robust Optimization Based Model Predictive Control for Stochastic Mixed Traffic Flow</title><author>Gao, Fengkun ; Yang, Bo ; Chen, Cailian ; Guan, Xinping ; Tang, Yuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-1ba15ba496bd1723faee27e263a7b52c4667e4e3a27621fa5ad053a5036e400f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Ambiguity</topic><topic>Computer architecture</topic><topic>data-driven distributionally robust optimization</topic><topic>Mathematical models</topic><topic>Mixed-traffic flow</topic><topic>Optimization</topic><topic>Prediction models</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Principal components analysis</topic><topic>ramp metering</topic><topic>Roads</topic><topic>Robustness</topic><topic>Speed limits</topic><topic>stochastic model predictive control</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Traffic congestion</topic><topic>Traffic control</topic><topic>Traffic flow</topic><topic>Traffic information</topic><topic>Traffic models</topic><topic>Travel time</topic><topic>Uncertainty</topic><topic>variable speed limit control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Fengkun</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Chen, Cailian</creatorcontrib><creatorcontrib>Guan, Xinping</creatorcontrib><creatorcontrib>Tang, Yuliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Fengkun</au><au>Yang, Bo</au><au>Chen, Cailian</au><au>Guan, Xinping</au><au>Tang, Yuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributionally Robust Optimization Based Model Predictive Control for Stochastic Mixed Traffic Flow</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>25</volume><issue>2</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>In this paper, we investigate a mixed-traffic control problem considering uncertainties of HDVs flow. The challenges mainly lie in modeling the stochastic characteristics of mixed-traffic flow and developing less-conservative algorithm to deal with the uncertainties. To tackle the problem, we propose a stochastic model predictive control (MPC) strategy based on data-driven distributionally robust optimization (DRO). First, a stochastic mixed-traffic model, extended from cell transmission model, is proposed to describe the traffic dynamics. Then, utilizing historical traffic data, an incremental principal component analysis (IPCA) based method is given to construct ambiguity set and incorporate generalized moment information of uncertainties. Based on the above predictive model and ambiguity set, a DRO-based MPC problem is formulated and further converted into an equivalent dual form for efficient solutions, i.e., ramp metering and variable speed limit control. Finally, simulation results based on real data collected in Shanghai, China, demonstrate that our proposed strategy can significantly reduce traffic congestion, achieving <inline-formula> <tex-math notation="LaTeX">5.74 \%</tex-math> </inline-formula> total travel time reduction compared to robust MPC.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3315955</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5923-9011</orcidid><orcidid>https://orcid.org/0000-0003-1858-8538</orcidid><orcidid>https://orcid.org/0000-0001-9268-8436</orcidid><orcidid>https://orcid.org/0000-0001-6533-8713</orcidid><orcidid>https://orcid.org/0000-0002-4548-6863</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2024-02, Vol.25 (2), p.1-12 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2921280247 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Ambiguity Computer architecture data-driven distributionally robust optimization Mathematical models Mixed-traffic flow Optimization Prediction models Predictive control Predictive models Principal components analysis ramp metering Roads Robustness Speed limits stochastic model predictive control Stochastic models Stochastic processes Traffic congestion Traffic control Traffic flow Traffic information Traffic models Travel time Uncertainty variable speed limit control |
title | Distributionally Robust Optimization Based Model Predictive Control for Stochastic Mixed Traffic Flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A08%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributionally%20Robust%20Optimization%20Based%20Model%20Predictive%20Control%20for%20Stochastic%20Mixed%20Traffic%20Flow&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Gao,%20Fengkun&rft.date=2024-02-01&rft.volume=25&rft.issue=2&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3315955&rft_dat=%3Cproquest_RIE%3E2921280247%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921280247&rft_id=info:pmid/&rft_ieee_id=10265770&rfr_iscdi=true |