Distributionally Robust Optimization Based Model Predictive Control for Stochastic Mixed Traffic Flow

In this paper, we investigate a mixed-traffic control problem considering uncertainties of HDVs flow. The challenges mainly lie in modeling the stochastic characteristics of mixed-traffic flow and developing less-conservative algorithm to deal with the uncertainties. To tackle the problem, we propos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-02, Vol.25 (2), p.1-12
Hauptverfasser: Gao, Fengkun, Yang, Bo, Chen, Cailian, Guan, Xinping, Tang, Yuliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 2
container_start_page 1
container_title IEEE transactions on intelligent transportation systems
container_volume 25
creator Gao, Fengkun
Yang, Bo
Chen, Cailian
Guan, Xinping
Tang, Yuliang
description In this paper, we investigate a mixed-traffic control problem considering uncertainties of HDVs flow. The challenges mainly lie in modeling the stochastic characteristics of mixed-traffic flow and developing less-conservative algorithm to deal with the uncertainties. To tackle the problem, we propose a stochastic model predictive control (MPC) strategy based on data-driven distributionally robust optimization (DRO). First, a stochastic mixed-traffic model, extended from cell transmission model, is proposed to describe the traffic dynamics. Then, utilizing historical traffic data, an incremental principal component analysis (IPCA) based method is given to construct ambiguity set and incorporate generalized moment information of uncertainties. Based on the above predictive model and ambiguity set, a DRO-based MPC problem is formulated and further converted into an equivalent dual form for efficient solutions, i.e., ramp metering and variable speed limit control. Finally, simulation results based on real data collected in Shanghai, China, demonstrate that our proposed strategy can significantly reduce traffic congestion, achieving 5.74 \% total travel time reduction compared to robust MPC.
doi_str_mv 10.1109/TITS.2023.3315955
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2921280247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10265770</ieee_id><sourcerecordid>2921280247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-1ba15ba496bd1723faee27e263a7b52c4667e4e3a27621fa5ad053a5036e400f3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmabo1arhZaKjedlk0xwS9qtuxu1_noT2oOnmXl5ZmAehK4pGVFKsrt8lq9GjDA-4pzKTMoTNKBSjhNCaHra90wkGZHkHF2EsO5SISkdIHi0IXpbtNG6rWmaPX5zRRsiXu6i3dhf0-f4wQSo8MJV0OBXD5Uto_0CPHHb6F2Da-fxKrryw4RoS7ywPx2de1PX3TRt3PclOqtNE-DqWIfoffqUT16S-fJ5NrmfJyXLRExoYagsjMjSoqKK8doAMAUs5UYVkpUiTRUI4IaplNHaSFMRyY0kPAVBSM2H6PZwd-fdZwsh6rVrffdX0CxjlI0JE6qj6IEqvQvBQ6133m6M32tKdG9T9zZ1b1MfbXY7N4cdCwD_eJZKpQj_A8vYccI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921280247</pqid></control><display><type>article</type><title>Distributionally Robust Optimization Based Model Predictive Control for Stochastic Mixed Traffic Flow</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Fengkun ; Yang, Bo ; Chen, Cailian ; Guan, Xinping ; Tang, Yuliang</creator><creatorcontrib>Gao, Fengkun ; Yang, Bo ; Chen, Cailian ; Guan, Xinping ; Tang, Yuliang</creatorcontrib><description>In this paper, we investigate a mixed-traffic control problem considering uncertainties of HDVs flow. The challenges mainly lie in modeling the stochastic characteristics of mixed-traffic flow and developing less-conservative algorithm to deal with the uncertainties. To tackle the problem, we propose a stochastic model predictive control (MPC) strategy based on data-driven distributionally robust optimization (DRO). First, a stochastic mixed-traffic model, extended from cell transmission model, is proposed to describe the traffic dynamics. Then, utilizing historical traffic data, an incremental principal component analysis (IPCA) based method is given to construct ambiguity set and incorporate generalized moment information of uncertainties. Based on the above predictive model and ambiguity set, a DRO-based MPC problem is formulated and further converted into an equivalent dual form for efficient solutions, i.e., ramp metering and variable speed limit control. Finally, simulation results based on real data collected in Shanghai, China, demonstrate that our proposed strategy can significantly reduce traffic congestion, achieving &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;5.74 \%&lt;/tex-math&gt; &lt;/inline-formula&gt; total travel time reduction compared to robust MPC.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2023.3315955</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Ambiguity ; Computer architecture ; data-driven distributionally robust optimization ; Mathematical models ; Mixed-traffic flow ; Optimization ; Prediction models ; Predictive control ; Predictive models ; Principal components analysis ; ramp metering ; Roads ; Robustness ; Speed limits ; stochastic model predictive control ; Stochastic models ; Stochastic processes ; Traffic congestion ; Traffic control ; Traffic flow ; Traffic information ; Traffic models ; Travel time ; Uncertainty ; variable speed limit control</subject><ispartof>IEEE transactions on intelligent transportation systems, 2024-02, Vol.25 (2), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-1ba15ba496bd1723faee27e263a7b52c4667e4e3a27621fa5ad053a5036e400f3</citedby><cites>FETCH-LOGICAL-c294t-1ba15ba496bd1723faee27e263a7b52c4667e4e3a27621fa5ad053a5036e400f3</cites><orcidid>0000-0002-5923-9011 ; 0000-0003-1858-8538 ; 0000-0001-9268-8436 ; 0000-0001-6533-8713 ; 0000-0002-4548-6863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10265770$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10265770$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Fengkun</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Chen, Cailian</creatorcontrib><creatorcontrib>Guan, Xinping</creatorcontrib><creatorcontrib>Tang, Yuliang</creatorcontrib><title>Distributionally Robust Optimization Based Model Predictive Control for Stochastic Mixed Traffic Flow</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>In this paper, we investigate a mixed-traffic control problem considering uncertainties of HDVs flow. The challenges mainly lie in modeling the stochastic characteristics of mixed-traffic flow and developing less-conservative algorithm to deal with the uncertainties. To tackle the problem, we propose a stochastic model predictive control (MPC) strategy based on data-driven distributionally robust optimization (DRO). First, a stochastic mixed-traffic model, extended from cell transmission model, is proposed to describe the traffic dynamics. Then, utilizing historical traffic data, an incremental principal component analysis (IPCA) based method is given to construct ambiguity set and incorporate generalized moment information of uncertainties. Based on the above predictive model and ambiguity set, a DRO-based MPC problem is formulated and further converted into an equivalent dual form for efficient solutions, i.e., ramp metering and variable speed limit control. Finally, simulation results based on real data collected in Shanghai, China, demonstrate that our proposed strategy can significantly reduce traffic congestion, achieving &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;5.74 \%&lt;/tex-math&gt; &lt;/inline-formula&gt; total travel time reduction compared to robust MPC.</description><subject>Algorithms</subject><subject>Ambiguity</subject><subject>Computer architecture</subject><subject>data-driven distributionally robust optimization</subject><subject>Mathematical models</subject><subject>Mixed-traffic flow</subject><subject>Optimization</subject><subject>Prediction models</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Principal components analysis</subject><subject>ramp metering</subject><subject>Roads</subject><subject>Robustness</subject><subject>Speed limits</subject><subject>stochastic model predictive control</subject><subject>Stochastic models</subject><subject>Stochastic processes</subject><subject>Traffic congestion</subject><subject>Traffic control</subject><subject>Traffic flow</subject><subject>Traffic information</subject><subject>Traffic models</subject><subject>Travel time</subject><subject>Uncertainty</subject><subject>variable speed limit control</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRsFZ_gOBhwXPqfmabo1arhZaKjedlk0xwS9qtuxu1_noT2oOnmXl5ZmAehK4pGVFKsrt8lq9GjDA-4pzKTMoTNKBSjhNCaHra90wkGZHkHF2EsO5SISkdIHi0IXpbtNG6rWmaPX5zRRsiXu6i3dhf0-f4wQSo8MJV0OBXD5Uto_0CPHHb6F2Da-fxKrryw4RoS7ywPx2de1PX3TRt3PclOqtNE-DqWIfoffqUT16S-fJ5NrmfJyXLRExoYagsjMjSoqKK8doAMAUs5UYVkpUiTRUI4IaplNHaSFMRyY0kPAVBSM2H6PZwd-fdZwsh6rVrffdX0CxjlI0JE6qj6IEqvQvBQ6133m6M32tKdG9T9zZ1b1MfbXY7N4cdCwD_eJZKpQj_A8vYccI</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Gao, Fengkun</creator><creator>Yang, Bo</creator><creator>Chen, Cailian</creator><creator>Guan, Xinping</creator><creator>Tang, Yuliang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5923-9011</orcidid><orcidid>https://orcid.org/0000-0003-1858-8538</orcidid><orcidid>https://orcid.org/0000-0001-9268-8436</orcidid><orcidid>https://orcid.org/0000-0001-6533-8713</orcidid><orcidid>https://orcid.org/0000-0002-4548-6863</orcidid></search><sort><creationdate>20240201</creationdate><title>Distributionally Robust Optimization Based Model Predictive Control for Stochastic Mixed Traffic Flow</title><author>Gao, Fengkun ; Yang, Bo ; Chen, Cailian ; Guan, Xinping ; Tang, Yuliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-1ba15ba496bd1723faee27e263a7b52c4667e4e3a27621fa5ad053a5036e400f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Ambiguity</topic><topic>Computer architecture</topic><topic>data-driven distributionally robust optimization</topic><topic>Mathematical models</topic><topic>Mixed-traffic flow</topic><topic>Optimization</topic><topic>Prediction models</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Principal components analysis</topic><topic>ramp metering</topic><topic>Roads</topic><topic>Robustness</topic><topic>Speed limits</topic><topic>stochastic model predictive control</topic><topic>Stochastic models</topic><topic>Stochastic processes</topic><topic>Traffic congestion</topic><topic>Traffic control</topic><topic>Traffic flow</topic><topic>Traffic information</topic><topic>Traffic models</topic><topic>Travel time</topic><topic>Uncertainty</topic><topic>variable speed limit control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Fengkun</creatorcontrib><creatorcontrib>Yang, Bo</creatorcontrib><creatorcontrib>Chen, Cailian</creatorcontrib><creatorcontrib>Guan, Xinping</creatorcontrib><creatorcontrib>Tang, Yuliang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Fengkun</au><au>Yang, Bo</au><au>Chen, Cailian</au><au>Guan, Xinping</au><au>Tang, Yuliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributionally Robust Optimization Based Model Predictive Control for Stochastic Mixed Traffic Flow</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>25</volume><issue>2</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>In this paper, we investigate a mixed-traffic control problem considering uncertainties of HDVs flow. The challenges mainly lie in modeling the stochastic characteristics of mixed-traffic flow and developing less-conservative algorithm to deal with the uncertainties. To tackle the problem, we propose a stochastic model predictive control (MPC) strategy based on data-driven distributionally robust optimization (DRO). First, a stochastic mixed-traffic model, extended from cell transmission model, is proposed to describe the traffic dynamics. Then, utilizing historical traffic data, an incremental principal component analysis (IPCA) based method is given to construct ambiguity set and incorporate generalized moment information of uncertainties. Based on the above predictive model and ambiguity set, a DRO-based MPC problem is formulated and further converted into an equivalent dual form for efficient solutions, i.e., ramp metering and variable speed limit control. Finally, simulation results based on real data collected in Shanghai, China, demonstrate that our proposed strategy can significantly reduce traffic congestion, achieving &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;5.74 \%&lt;/tex-math&gt; &lt;/inline-formula&gt; total travel time reduction compared to robust MPC.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2023.3315955</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5923-9011</orcidid><orcidid>https://orcid.org/0000-0003-1858-8538</orcidid><orcidid>https://orcid.org/0000-0001-9268-8436</orcidid><orcidid>https://orcid.org/0000-0001-6533-8713</orcidid><orcidid>https://orcid.org/0000-0002-4548-6863</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2024-02, Vol.25 (2), p.1-12
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2921280247
source IEEE Electronic Library (IEL)
subjects Algorithms
Ambiguity
Computer architecture
data-driven distributionally robust optimization
Mathematical models
Mixed-traffic flow
Optimization
Prediction models
Predictive control
Predictive models
Principal components analysis
ramp metering
Roads
Robustness
Speed limits
stochastic model predictive control
Stochastic models
Stochastic processes
Traffic congestion
Traffic control
Traffic flow
Traffic information
Traffic models
Travel time
Uncertainty
variable speed limit control
title Distributionally Robust Optimization Based Model Predictive Control for Stochastic Mixed Traffic Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A08%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributionally%20Robust%20Optimization%20Based%20Model%20Predictive%20Control%20for%20Stochastic%20Mixed%20Traffic%20Flow&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Gao,%20Fengkun&rft.date=2024-02-01&rft.volume=25&rft.issue=2&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2023.3315955&rft_dat=%3Cproquest_RIE%3E2921280247%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921280247&rft_id=info:pmid/&rft_ieee_id=10265770&rfr_iscdi=true