A New Machine Learning Based Calibration Scheme for MODIS Thermal Infrared Water Vapor Product Using BPNN, GBDT, GRNN, KNN, MLPNN, RF, and XGBoost
The knowledge of atmospheric water vapor distribution is vital to our understanding of weather and climate. In this article, we propose a new calibration scheme based on machine learning to enhance the observational performance of official all-weather precipitable water vapor (PWV) data records from...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Xu, Jiafei Liu, Zhizhao Hong, Guan Cao, Yunchang |
description | The knowledge of atmospheric water vapor distribution is vital to our understanding of weather and climate. In this article, we propose a new calibration scheme based on machine learning to enhance the observational performance of official all-weather precipitable water vapor (PWV) data records from thermal infrared (IR) measurements of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The calibration scheme takes several influence factors into consideration, which are linked with the performance of satellite-retrieved IR PWV measurements. The ground-based water vapor data, acquired from 214 global positioning system (GPS) sites across China in 2016, are regarded as reference PWV to train the machine-learning-based calibration approaches. The evaluation result during 2017–2019 across China shows that the calibrated MODIS IR all-weather PWV product agrees better with GPS-retrieved reference PWV observations, with [Formula Omitted] of 0.88–0.94, root-mean-square error (RMSE) of 2.79–4.08 mm, and mean bias (MB) of 0.16–0.52 mm. The RMSE between water vapor measurements from MODIS and GPS can be reduced by 41.74%, 45.76%, 44.29%, and 49.04% in confident-clear, probably-clear, probably-cloudy, and confident-cloudy conditions, respectively. Our methods, developed based on the new calibration scheme, could be a promising tool to the calibration of other satellite-derived IR all-weather water vapor products, which could be also extended to other regions or time periods. |
doi_str_mv | 10.1109/TGRS.2024.3356578 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921241973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921241973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-dbfabc34a8292157f45f6ae9e5a024c93ac66a2caf18bbc67bad9adacf188f563</originalsourceid><addsrcrecordid>eNotkFtPwjAYhhujiYj-AO-aeMuw7dYdLjnIJHIKDPVu-da1MgIrtiPGv-EvdgNuvlOevF_yIPRISZdSEj0n8XLVZYR5XdflPg_CK9SinIcO8T3vGrUIjXyHhRG7RXfWbgmhHqdBC_318Ez-4CmITVFKPJFgyqL8wn2wMscD2BWZgarQJV6JjdxLrLTB0_lwvMLJRpo97PC4VAZMTX9AJQ1-h0ONLIzOj6LCa3tKW8xmHRz3h0ldl8381pTp5HRfjjoYyhx_xn2tbXWPbhTsrHy49DZaj16SwaszmcfjQW_iCBa4lZNnCjLhehCyiFEeKI8rH2QkOdQaROSC8H1gAhQNs0z4QQZ5BDmIeg8V9902ejrnHoz-PkpbpVt9NGX9Mm0SmUejwK0peqaE0dYaqdKDKfZgflNK0kZ92qhPG_XpRb37D75EdIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921241973</pqid></control><display><type>article</type><title>A New Machine Learning Based Calibration Scheme for MODIS Thermal Infrared Water Vapor Product Using BPNN, GBDT, GRNN, KNN, MLPNN, RF, and XGBoost</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Jiafei ; Liu, Zhizhao ; Hong, Guan ; Cao, Yunchang</creator><creatorcontrib>Xu, Jiafei ; Liu, Zhizhao ; Hong, Guan ; Cao, Yunchang</creatorcontrib><description>The knowledge of atmospheric water vapor distribution is vital to our understanding of weather and climate. In this article, we propose a new calibration scheme based on machine learning to enhance the observational performance of official all-weather precipitable water vapor (PWV) data records from thermal infrared (IR) measurements of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The calibration scheme takes several influence factors into consideration, which are linked with the performance of satellite-retrieved IR PWV measurements. The ground-based water vapor data, acquired from 214 global positioning system (GPS) sites across China in 2016, are regarded as reference PWV to train the machine-learning-based calibration approaches. The evaluation result during 2017–2019 across China shows that the calibrated MODIS IR all-weather PWV product agrees better with GPS-retrieved reference PWV observations, with [Formula Omitted] of 0.88–0.94, root-mean-square error (RMSE) of 2.79–4.08 mm, and mean bias (MB) of 0.16–0.52 mm. The RMSE between water vapor measurements from MODIS and GPS can be reduced by 41.74%, 45.76%, 44.29%, and 49.04% in confident-clear, probably-clear, probably-cloudy, and confident-cloudy conditions, respectively. Our methods, developed based on the new calibration scheme, could be a promising tool to the calibration of other satellite-derived IR all-weather water vapor products, which could be also extended to other regions or time periods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3356578</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Atmospheric water ; Calibration ; Data acquisition ; Global positioning systems ; GPS ; Learning algorithms ; Machine learning ; MODIS ; Observational learning ; Positioning systems ; Root-mean-square errors ; Satellites ; Spectroradiometers ; Water vapor ; Water vapour ; Weather</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c273t-dbfabc34a8292157f45f6ae9e5a024c93ac66a2caf18bbc67bad9adacf188f563</citedby><orcidid>0000-0001-7500-870X ; 0000-0001-6822-9248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Jiafei</creatorcontrib><creatorcontrib>Liu, Zhizhao</creatorcontrib><creatorcontrib>Hong, Guan</creatorcontrib><creatorcontrib>Cao, Yunchang</creatorcontrib><title>A New Machine Learning Based Calibration Scheme for MODIS Thermal Infrared Water Vapor Product Using BPNN, GBDT, GRNN, KNN, MLPNN, RF, and XGBoost</title><title>IEEE transactions on geoscience and remote sensing</title><description>The knowledge of atmospheric water vapor distribution is vital to our understanding of weather and climate. In this article, we propose a new calibration scheme based on machine learning to enhance the observational performance of official all-weather precipitable water vapor (PWV) data records from thermal infrared (IR) measurements of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The calibration scheme takes several influence factors into consideration, which are linked with the performance of satellite-retrieved IR PWV measurements. The ground-based water vapor data, acquired from 214 global positioning system (GPS) sites across China in 2016, are regarded as reference PWV to train the machine-learning-based calibration approaches. The evaluation result during 2017–2019 across China shows that the calibrated MODIS IR all-weather PWV product agrees better with GPS-retrieved reference PWV observations, with [Formula Omitted] of 0.88–0.94, root-mean-square error (RMSE) of 2.79–4.08 mm, and mean bias (MB) of 0.16–0.52 mm. The RMSE between water vapor measurements from MODIS and GPS can be reduced by 41.74%, 45.76%, 44.29%, and 49.04% in confident-clear, probably-clear, probably-cloudy, and confident-cloudy conditions, respectively. Our methods, developed based on the new calibration scheme, could be a promising tool to the calibration of other satellite-derived IR all-weather water vapor products, which could be also extended to other regions or time periods.</description><subject>Atmospheric water</subject><subject>Calibration</subject><subject>Data acquisition</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>MODIS</subject><subject>Observational learning</subject><subject>Positioning systems</subject><subject>Root-mean-square errors</subject><subject>Satellites</subject><subject>Spectroradiometers</subject><subject>Water vapor</subject><subject>Water vapour</subject><subject>Weather</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkFtPwjAYhhujiYj-AO-aeMuw7dYdLjnIJHIKDPVu-da1MgIrtiPGv-EvdgNuvlOevF_yIPRISZdSEj0n8XLVZYR5XdflPg_CK9SinIcO8T3vGrUIjXyHhRG7RXfWbgmhHqdBC_318Ez-4CmITVFKPJFgyqL8wn2wMscD2BWZgarQJV6JjdxLrLTB0_lwvMLJRpo97PC4VAZMTX9AJQ1-h0ONLIzOj6LCa3tKW8xmHRz3h0ldl8381pTp5HRfjjoYyhx_xn2tbXWPbhTsrHy49DZaj16SwaszmcfjQW_iCBa4lZNnCjLhehCyiFEeKI8rH2QkOdQaROSC8H1gAhQNs0z4QQZ5BDmIeg8V9902ejrnHoz-PkpbpVt9NGX9Mm0SmUejwK0peqaE0dYaqdKDKfZgflNK0kZ92qhPG_XpRb37D75EdIQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Xu, Jiafei</creator><creator>Liu, Zhizhao</creator><creator>Hong, Guan</creator><creator>Cao, Yunchang</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7500-870X</orcidid><orcidid>https://orcid.org/0000-0001-6822-9248</orcidid></search><sort><creationdate>2024</creationdate><title>A New Machine Learning Based Calibration Scheme for MODIS Thermal Infrared Water Vapor Product Using BPNN, GBDT, GRNN, KNN, MLPNN, RF, and XGBoost</title><author>Xu, Jiafei ; Liu, Zhizhao ; Hong, Guan ; Cao, Yunchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-dbfabc34a8292157f45f6ae9e5a024c93ac66a2caf18bbc67bad9adacf188f563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Atmospheric water</topic><topic>Calibration</topic><topic>Data acquisition</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>MODIS</topic><topic>Observational learning</topic><topic>Positioning systems</topic><topic>Root-mean-square errors</topic><topic>Satellites</topic><topic>Spectroradiometers</topic><topic>Water vapor</topic><topic>Water vapour</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiafei</creatorcontrib><creatorcontrib>Liu, Zhizhao</creatorcontrib><creatorcontrib>Hong, Guan</creatorcontrib><creatorcontrib>Cao, Yunchang</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiafei</au><au>Liu, Zhizhao</au><au>Hong, Guan</au><au>Cao, Yunchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Machine Learning Based Calibration Scheme for MODIS Thermal Infrared Water Vapor Product Using BPNN, GBDT, GRNN, KNN, MLPNN, RF, and XGBoost</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><abstract>The knowledge of atmospheric water vapor distribution is vital to our understanding of weather and climate. In this article, we propose a new calibration scheme based on machine learning to enhance the observational performance of official all-weather precipitable water vapor (PWV) data records from thermal infrared (IR) measurements of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The calibration scheme takes several influence factors into consideration, which are linked with the performance of satellite-retrieved IR PWV measurements. The ground-based water vapor data, acquired from 214 global positioning system (GPS) sites across China in 2016, are regarded as reference PWV to train the machine-learning-based calibration approaches. The evaluation result during 2017–2019 across China shows that the calibrated MODIS IR all-weather PWV product agrees better with GPS-retrieved reference PWV observations, with [Formula Omitted] of 0.88–0.94, root-mean-square error (RMSE) of 2.79–4.08 mm, and mean bias (MB) of 0.16–0.52 mm. The RMSE between water vapor measurements from MODIS and GPS can be reduced by 41.74%, 45.76%, 44.29%, and 49.04% in confident-clear, probably-clear, probably-cloudy, and confident-cloudy conditions, respectively. Our methods, developed based on the new calibration scheme, could be a promising tool to the calibration of other satellite-derived IR all-weather water vapor products, which could be also extended to other regions or time periods.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/TGRS.2024.3356578</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7500-870X</orcidid><orcidid>https://orcid.org/0000-0001-6822-9248</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2921241973 |
source | IEEE Electronic Library (IEL) |
subjects | Atmospheric water Calibration Data acquisition Global positioning systems GPS Learning algorithms Machine learning MODIS Observational learning Positioning systems Root-mean-square errors Satellites Spectroradiometers Water vapor Water vapour Weather |
title | A New Machine Learning Based Calibration Scheme for MODIS Thermal Infrared Water Vapor Product Using BPNN, GBDT, GRNN, KNN, MLPNN, RF, and XGBoost |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Machine%20Learning%20Based%20Calibration%20Scheme%20for%20MODIS%20Thermal%20Infrared%20Water%20Vapor%20Product%20Using%20BPNN,%20GBDT,%20GRNN,%20KNN,%20MLPNN,%20RF,%20and%20XGBoost&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Xu,%20Jiafei&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft_id=info:doi/10.1109/TGRS.2024.3356578&rft_dat=%3Cproquest_cross%3E2921241973%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921241973&rft_id=info:pmid/&rfr_iscdi=true |