A Spatiotemporal Multiscale Deep Learning Model for Subseasonal Prediction of Arctic Sea Ice
Physics-based dynamical models can successfully predict short-term sea ice trends, but they struggle to provide reliable subseasonal sea ice predictions over shorter time periods and are not flexible enough to provide real-time/quasi-real-time predictions. Therefore, we use deep learning to establis...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-22 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 62 |
creator | Zheng, Qingyu Wang, Ru Han, Guijun Li, Wei Wang, Xuan Shao, Qi Wu, Xiaobo Cao, Lige Zhou, Gongfu Hu, Song |
description | Physics-based dynamical models can successfully predict short-term sea ice trends, but they struggle to provide reliable subseasonal sea ice predictions over shorter time periods and are not flexible enough to provide real-time/quasi-real-time predictions. Therefore, we use deep learning to establish a purely remote sensing data-driven Arctic sea ice prediction system, IceFormer. IceFormer is trained by high-quality Arctic reanalysis data and remote sensing observations. It can provide daily sea ice concentration (SIC) and sea ice thickness (SIT) predictions for the pan-Arctic region with a lead time of 45 days. We show that IceFormer advances lightweight multivariate forecasting of Arctic sea ice. Driven by remote sensing data, the prediction performance of IceFormer is far superior to traditional baseline models and machine learning models. The root mean square error (RMSE) and spatial anomaly correlation coefficient (SACC) of SIC (averaged within 45 days) are 6.62% and 0.80, respectively. The RMSE and SACC of SIT (averaged within 45 days) are 0.04 m and 0.93, respectively. IceFormer can successfully capture the sea ice evolution on a seasonal scale (especially in the melting season), and the monthly average SACC is stable at around 0.70. After comparison, the SIC prediction performance of IceFormer is better than that of a Coupled Ensemble Numerical Forecast Model from May to November. The information transfer analysis shows that the simultaneous prediction of SIC and SIT can effectively improve the predictability and explainability of sea ice. |
doi_str_mv | 10.1109/TGRS.2024.3355238 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2921241492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10402090</ieee_id><sourcerecordid>2921241492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-47437073981ef69a5aed71e76d3649833066b6914c7342e8119e9c0a531e99433</originalsourceid><addsrcrecordid>eNpNkEFLwzAYhoMoOKc_QPAQ8NyZL0nT5jimTmFDsfMmhCz9Kh1dU5P24L-3Yzt4-t7D8758PITcApsBMP2wWX4UM864nAmRplzkZ2QCaZonTEl5TiYMtEp4rvkluYpxxxjIFLIJ-ZrTorN97Xvcdz7Yhq6Hpq-jsw3SR8SOrtCGtm6_6dqX2NDKB1oM24g2-nbE3wOWtRsHWuorOg9jdLRAS18dXpOLyjYRb053Sj6fnzaLl2T1tnxdzFeJ41L1icykyFgmdA5YKW1Ti2UGmKlSKKlzIZhSW6VBukxIjjmARu2YTQWg1lKIKbk_7nbB_wwYe7PzQxi_i4ZrDlyC1Hyk4Ei54GMMWJku1Hsbfg0wc5BoDhLNQaI5SRw7d8dOjYj_eMk400z8AfJMa70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921241492</pqid></control><display><type>article</type><title>A Spatiotemporal Multiscale Deep Learning Model for Subseasonal Prediction of Arctic Sea Ice</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Qingyu ; Wang, Ru ; Han, Guijun ; Li, Wei ; Wang, Xuan ; Shao, Qi ; Wu, Xiaobo ; Cao, Lige ; Zhou, Gongfu ; Hu, Song</creator><creatorcontrib>Zheng, Qingyu ; Wang, Ru ; Han, Guijun ; Li, Wei ; Wang, Xuan ; Shao, Qi ; Wu, Xiaobo ; Cao, Lige ; Zhou, Gongfu ; Hu, Song</creatorcontrib><description>Physics-based dynamical models can successfully predict short-term sea ice trends, but they struggle to provide reliable subseasonal sea ice predictions over shorter time periods and are not flexible enough to provide real-time/quasi-real-time predictions. Therefore, we use deep learning to establish a purely remote sensing data-driven Arctic sea ice prediction system, IceFormer. IceFormer is trained by high-quality Arctic reanalysis data and remote sensing observations. It can provide daily sea ice concentration (SIC) and sea ice thickness (SIT) predictions for the pan-Arctic region with a lead time of 45 days. We show that IceFormer advances lightweight multivariate forecasting of Arctic sea ice. Driven by remote sensing data, the prediction performance of IceFormer is far superior to traditional baseline models and machine learning models. The root mean square error (RMSE) and spatial anomaly correlation coefficient (SACC) of SIC (averaged within 45 days) are 6.62% and 0.80, respectively. The RMSE and SACC of SIT (averaged within 45 days) are 0.04 m and 0.93, respectively. IceFormer can successfully capture the sea ice evolution on a seasonal scale (especially in the melting season), and the monthly average SACC is stable at around 0.70. After comparison, the SIC prediction performance of IceFormer is better than that of a Coupled Ensemble Numerical Forecast Model from May to November. The information transfer analysis shows that the simultaneous prediction of SIC and SIT can effectively improve the predictability and explainability of sea ice.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3355238</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arctic ; Arctic zone ; Atmospheric modeling ; Correlation coefficient ; Correlation coefficients ; Data models ; Deep learning ; Deep learning (DL) ; Dynamic models ; Ice cover ; Ice environments ; Ice thickness ; Information transfer ; Lead time ; Machine learning ; Mathematical models ; Numerical models ; Oceans ; Performance prediction ; Physics ; Predictions ; Predictive models ; Real time ; Remote sensing ; remote sensing data-driven ; Root-mean-square errors ; Sea ice ; sea ice concentration (SIC) ; sea ice thickness (SIT) ; spatiotemporal prediction</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-22</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-47437073981ef69a5aed71e76d3649833066b6914c7342e8119e9c0a531e99433</cites><orcidid>0009-0000-5637-2872 ; 0000-0001-6184-8476 ; 0000-0001-6116-7718 ; 0000-0001-6476-6927 ; 0000-0001-8442-7148 ; 0000-0002-8059-5010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10402090$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10402090$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Qingyu</creatorcontrib><creatorcontrib>Wang, Ru</creatorcontrib><creatorcontrib>Han, Guijun</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Shao, Qi</creatorcontrib><creatorcontrib>Wu, Xiaobo</creatorcontrib><creatorcontrib>Cao, Lige</creatorcontrib><creatorcontrib>Zhou, Gongfu</creatorcontrib><creatorcontrib>Hu, Song</creatorcontrib><title>A Spatiotemporal Multiscale Deep Learning Model for Subseasonal Prediction of Arctic Sea Ice</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Physics-based dynamical models can successfully predict short-term sea ice trends, but they struggle to provide reliable subseasonal sea ice predictions over shorter time periods and are not flexible enough to provide real-time/quasi-real-time predictions. Therefore, we use deep learning to establish a purely remote sensing data-driven Arctic sea ice prediction system, IceFormer. IceFormer is trained by high-quality Arctic reanalysis data and remote sensing observations. It can provide daily sea ice concentration (SIC) and sea ice thickness (SIT) predictions for the pan-Arctic region with a lead time of 45 days. We show that IceFormer advances lightweight multivariate forecasting of Arctic sea ice. Driven by remote sensing data, the prediction performance of IceFormer is far superior to traditional baseline models and machine learning models. The root mean square error (RMSE) and spatial anomaly correlation coefficient (SACC) of SIC (averaged within 45 days) are 6.62% and 0.80, respectively. The RMSE and SACC of SIT (averaged within 45 days) are 0.04 m and 0.93, respectively. IceFormer can successfully capture the sea ice evolution on a seasonal scale (especially in the melting season), and the monthly average SACC is stable at around 0.70. After comparison, the SIC prediction performance of IceFormer is better than that of a Coupled Ensemble Numerical Forecast Model from May to November. The information transfer analysis shows that the simultaneous prediction of SIC and SIT can effectively improve the predictability and explainability of sea ice.</description><subject>Arctic</subject><subject>Arctic zone</subject><subject>Atmospheric modeling</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Deep learning (DL)</subject><subject>Dynamic models</subject><subject>Ice cover</subject><subject>Ice environments</subject><subject>Ice thickness</subject><subject>Information transfer</subject><subject>Lead time</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Oceans</subject><subject>Performance prediction</subject><subject>Physics</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Real time</subject><subject>Remote sensing</subject><subject>remote sensing data-driven</subject><subject>Root-mean-square errors</subject><subject>Sea ice</subject><subject>sea ice concentration (SIC)</subject><subject>sea ice thickness (SIT)</subject><subject>spatiotemporal prediction</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAYhoMoOKc_QPAQ8NyZL0nT5jimTmFDsfMmhCz9Kh1dU5P24L-3Yzt4-t7D8758PITcApsBMP2wWX4UM864nAmRplzkZ2QCaZonTEl5TiYMtEp4rvkluYpxxxjIFLIJ-ZrTorN97Xvcdz7Yhq6Hpq-jsw3SR8SOrtCGtm6_6dqX2NDKB1oM24g2-nbE3wOWtRsHWuorOg9jdLRAS18dXpOLyjYRb053Sj6fnzaLl2T1tnxdzFeJ41L1icykyFgmdA5YKW1Ti2UGmKlSKKlzIZhSW6VBukxIjjmARu2YTQWg1lKIKbk_7nbB_wwYe7PzQxi_i4ZrDlyC1Hyk4Ei54GMMWJku1Hsbfg0wc5BoDhLNQaI5SRw7d8dOjYj_eMk400z8AfJMa70</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zheng, Qingyu</creator><creator>Wang, Ru</creator><creator>Han, Guijun</creator><creator>Li, Wei</creator><creator>Wang, Xuan</creator><creator>Shao, Qi</creator><creator>Wu, Xiaobo</creator><creator>Cao, Lige</creator><creator>Zhou, Gongfu</creator><creator>Hu, Song</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0000-5637-2872</orcidid><orcidid>https://orcid.org/0000-0001-6184-8476</orcidid><orcidid>https://orcid.org/0000-0001-6116-7718</orcidid><orcidid>https://orcid.org/0000-0001-6476-6927</orcidid><orcidid>https://orcid.org/0000-0001-8442-7148</orcidid><orcidid>https://orcid.org/0000-0002-8059-5010</orcidid></search><sort><creationdate>2024</creationdate><title>A Spatiotemporal Multiscale Deep Learning Model for Subseasonal Prediction of Arctic Sea Ice</title><author>Zheng, Qingyu ; Wang, Ru ; Han, Guijun ; Li, Wei ; Wang, Xuan ; Shao, Qi ; Wu, Xiaobo ; Cao, Lige ; Zhou, Gongfu ; Hu, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-47437073981ef69a5aed71e76d3649833066b6914c7342e8119e9c0a531e99433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arctic</topic><topic>Arctic zone</topic><topic>Atmospheric modeling</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Deep learning (DL)</topic><topic>Dynamic models</topic><topic>Ice cover</topic><topic>Ice environments</topic><topic>Ice thickness</topic><topic>Information transfer</topic><topic>Lead time</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Oceans</topic><topic>Performance prediction</topic><topic>Physics</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Real time</topic><topic>Remote sensing</topic><topic>remote sensing data-driven</topic><topic>Root-mean-square errors</topic><topic>Sea ice</topic><topic>sea ice concentration (SIC)</topic><topic>sea ice thickness (SIT)</topic><topic>spatiotemporal prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Qingyu</creatorcontrib><creatorcontrib>Wang, Ru</creatorcontrib><creatorcontrib>Han, Guijun</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Shao, Qi</creatorcontrib><creatorcontrib>Wu, Xiaobo</creatorcontrib><creatorcontrib>Cao, Lige</creatorcontrib><creatorcontrib>Zhou, Gongfu</creatorcontrib><creatorcontrib>Hu, Song</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Qingyu</au><au>Wang, Ru</au><au>Han, Guijun</au><au>Li, Wei</au><au>Wang, Xuan</au><au>Shao, Qi</au><au>Wu, Xiaobo</au><au>Cao, Lige</au><au>Zhou, Gongfu</au><au>Hu, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Spatiotemporal Multiscale Deep Learning Model for Subseasonal Prediction of Arctic Sea Ice</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Physics-based dynamical models can successfully predict short-term sea ice trends, but they struggle to provide reliable subseasonal sea ice predictions over shorter time periods and are not flexible enough to provide real-time/quasi-real-time predictions. Therefore, we use deep learning to establish a purely remote sensing data-driven Arctic sea ice prediction system, IceFormer. IceFormer is trained by high-quality Arctic reanalysis data and remote sensing observations. It can provide daily sea ice concentration (SIC) and sea ice thickness (SIT) predictions for the pan-Arctic region with a lead time of 45 days. We show that IceFormer advances lightweight multivariate forecasting of Arctic sea ice. Driven by remote sensing data, the prediction performance of IceFormer is far superior to traditional baseline models and machine learning models. The root mean square error (RMSE) and spatial anomaly correlation coefficient (SACC) of SIC (averaged within 45 days) are 6.62% and 0.80, respectively. The RMSE and SACC of SIT (averaged within 45 days) are 0.04 m and 0.93, respectively. IceFormer can successfully capture the sea ice evolution on a seasonal scale (especially in the melting season), and the monthly average SACC is stable at around 0.70. After comparison, the SIC prediction performance of IceFormer is better than that of a Coupled Ensemble Numerical Forecast Model from May to November. The information transfer analysis shows that the simultaneous prediction of SIC and SIT can effectively improve the predictability and explainability of sea ice.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3355238</doi><tpages>22</tpages><orcidid>https://orcid.org/0009-0000-5637-2872</orcidid><orcidid>https://orcid.org/0000-0001-6184-8476</orcidid><orcidid>https://orcid.org/0000-0001-6116-7718</orcidid><orcidid>https://orcid.org/0000-0001-6476-6927</orcidid><orcidid>https://orcid.org/0000-0001-8442-7148</orcidid><orcidid>https://orcid.org/0000-0002-8059-5010</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-22 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2921241492 |
source | IEEE Electronic Library (IEL) |
subjects | Arctic Arctic zone Atmospheric modeling Correlation coefficient Correlation coefficients Data models Deep learning Deep learning (DL) Dynamic models Ice cover Ice environments Ice thickness Information transfer Lead time Machine learning Mathematical models Numerical models Oceans Performance prediction Physics Predictions Predictive models Real time Remote sensing remote sensing data-driven Root-mean-square errors Sea ice sea ice concentration (SIC) sea ice thickness (SIT) spatiotemporal prediction |
title | A Spatiotemporal Multiscale Deep Learning Model for Subseasonal Prediction of Arctic Sea Ice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Spatiotemporal%20Multiscale%20Deep%20Learning%20Model%20for%20Subseasonal%20Prediction%20of%20Arctic%20Sea%20Ice&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zheng,%20Qingyu&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3355238&rft_dat=%3Cproquest_RIE%3E2921241492%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921241492&rft_id=info:pmid/&rft_ieee_id=10402090&rfr_iscdi=true |