A Spatiotemporal Multiscale Deep Learning Model for Subseasonal Prediction of Arctic Sea Ice

Physics-based dynamical models can successfully predict short-term sea ice trends, but they struggle to provide reliable subseasonal sea ice predictions over shorter time periods and are not flexible enough to provide real-time/quasi-real-time predictions. Therefore, we use deep learning to establis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2024, Vol.62, p.1-22
Hauptverfasser: Zheng, Qingyu, Wang, Ru, Han, Guijun, Li, Wei, Wang, Xuan, Shao, Qi, Wu, Xiaobo, Cao, Lige, Zhou, Gongfu, Hu, Song
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 62
creator Zheng, Qingyu
Wang, Ru
Han, Guijun
Li, Wei
Wang, Xuan
Shao, Qi
Wu, Xiaobo
Cao, Lige
Zhou, Gongfu
Hu, Song
description Physics-based dynamical models can successfully predict short-term sea ice trends, but they struggle to provide reliable subseasonal sea ice predictions over shorter time periods and are not flexible enough to provide real-time/quasi-real-time predictions. Therefore, we use deep learning to establish a purely remote sensing data-driven Arctic sea ice prediction system, IceFormer. IceFormer is trained by high-quality Arctic reanalysis data and remote sensing observations. It can provide daily sea ice concentration (SIC) and sea ice thickness (SIT) predictions for the pan-Arctic region with a lead time of 45 days. We show that IceFormer advances lightweight multivariate forecasting of Arctic sea ice. Driven by remote sensing data, the prediction performance of IceFormer is far superior to traditional baseline models and machine learning models. The root mean square error (RMSE) and spatial anomaly correlation coefficient (SACC) of SIC (averaged within 45 days) are 6.62% and 0.80, respectively. The RMSE and SACC of SIT (averaged within 45 days) are 0.04 m and 0.93, respectively. IceFormer can successfully capture the sea ice evolution on a seasonal scale (especially in the melting season), and the monthly average SACC is stable at around 0.70. After comparison, the SIC prediction performance of IceFormer is better than that of a Coupled Ensemble Numerical Forecast Model from May to November. The information transfer analysis shows that the simultaneous prediction of SIC and SIT can effectively improve the predictability and explainability of sea ice.
doi_str_mv 10.1109/TGRS.2024.3355238
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2921241492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10402090</ieee_id><sourcerecordid>2921241492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-47437073981ef69a5aed71e76d3649833066b6914c7342e8119e9c0a531e99433</originalsourceid><addsrcrecordid>eNpNkEFLwzAYhoMoOKc_QPAQ8NyZL0nT5jimTmFDsfMmhCz9Kh1dU5P24L-3Yzt4-t7D8758PITcApsBMP2wWX4UM864nAmRplzkZ2QCaZonTEl5TiYMtEp4rvkluYpxxxjIFLIJ-ZrTorN97Xvcdz7Yhq6Hpq-jsw3SR8SOrtCGtm6_6dqX2NDKB1oM24g2-nbE3wOWtRsHWuorOg9jdLRAS18dXpOLyjYRb053Sj6fnzaLl2T1tnxdzFeJ41L1icykyFgmdA5YKW1Ti2UGmKlSKKlzIZhSW6VBukxIjjmARu2YTQWg1lKIKbk_7nbB_wwYe7PzQxi_i4ZrDlyC1Hyk4Ei54GMMWJku1Hsbfg0wc5BoDhLNQaI5SRw7d8dOjYj_eMk400z8AfJMa70</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921241492</pqid></control><display><type>article</type><title>A Spatiotemporal Multiscale Deep Learning Model for Subseasonal Prediction of Arctic Sea Ice</title><source>IEEE Electronic Library (IEL)</source><creator>Zheng, Qingyu ; Wang, Ru ; Han, Guijun ; Li, Wei ; Wang, Xuan ; Shao, Qi ; Wu, Xiaobo ; Cao, Lige ; Zhou, Gongfu ; Hu, Song</creator><creatorcontrib>Zheng, Qingyu ; Wang, Ru ; Han, Guijun ; Li, Wei ; Wang, Xuan ; Shao, Qi ; Wu, Xiaobo ; Cao, Lige ; Zhou, Gongfu ; Hu, Song</creatorcontrib><description>Physics-based dynamical models can successfully predict short-term sea ice trends, but they struggle to provide reliable subseasonal sea ice predictions over shorter time periods and are not flexible enough to provide real-time/quasi-real-time predictions. Therefore, we use deep learning to establish a purely remote sensing data-driven Arctic sea ice prediction system, IceFormer. IceFormer is trained by high-quality Arctic reanalysis data and remote sensing observations. It can provide daily sea ice concentration (SIC) and sea ice thickness (SIT) predictions for the pan-Arctic region with a lead time of 45 days. We show that IceFormer advances lightweight multivariate forecasting of Arctic sea ice. Driven by remote sensing data, the prediction performance of IceFormer is far superior to traditional baseline models and machine learning models. The root mean square error (RMSE) and spatial anomaly correlation coefficient (SACC) of SIC (averaged within 45 days) are 6.62% and 0.80, respectively. The RMSE and SACC of SIT (averaged within 45 days) are 0.04 m and 0.93, respectively. IceFormer can successfully capture the sea ice evolution on a seasonal scale (especially in the melting season), and the monthly average SACC is stable at around 0.70. After comparison, the SIC prediction performance of IceFormer is better than that of a Coupled Ensemble Numerical Forecast Model from May to November. The information transfer analysis shows that the simultaneous prediction of SIC and SIT can effectively improve the predictability and explainability of sea ice.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2024.3355238</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Arctic ; Arctic zone ; Atmospheric modeling ; Correlation coefficient ; Correlation coefficients ; Data models ; Deep learning ; Deep learning (DL) ; Dynamic models ; Ice cover ; Ice environments ; Ice thickness ; Information transfer ; Lead time ; Machine learning ; Mathematical models ; Numerical models ; Oceans ; Performance prediction ; Physics ; Predictions ; Predictive models ; Real time ; Remote sensing ; remote sensing data-driven ; Root-mean-square errors ; Sea ice ; sea ice concentration (SIC) ; sea ice thickness (SIT) ; spatiotemporal prediction</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-22</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c246t-47437073981ef69a5aed71e76d3649833066b6914c7342e8119e9c0a531e99433</cites><orcidid>0009-0000-5637-2872 ; 0000-0001-6184-8476 ; 0000-0001-6116-7718 ; 0000-0001-6476-6927 ; 0000-0001-8442-7148 ; 0000-0002-8059-5010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10402090$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10402090$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zheng, Qingyu</creatorcontrib><creatorcontrib>Wang, Ru</creatorcontrib><creatorcontrib>Han, Guijun</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Shao, Qi</creatorcontrib><creatorcontrib>Wu, Xiaobo</creatorcontrib><creatorcontrib>Cao, Lige</creatorcontrib><creatorcontrib>Zhou, Gongfu</creatorcontrib><creatorcontrib>Hu, Song</creatorcontrib><title>A Spatiotemporal Multiscale Deep Learning Model for Subseasonal Prediction of Arctic Sea Ice</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Physics-based dynamical models can successfully predict short-term sea ice trends, but they struggle to provide reliable subseasonal sea ice predictions over shorter time periods and are not flexible enough to provide real-time/quasi-real-time predictions. Therefore, we use deep learning to establish a purely remote sensing data-driven Arctic sea ice prediction system, IceFormer. IceFormer is trained by high-quality Arctic reanalysis data and remote sensing observations. It can provide daily sea ice concentration (SIC) and sea ice thickness (SIT) predictions for the pan-Arctic region with a lead time of 45 days. We show that IceFormer advances lightweight multivariate forecasting of Arctic sea ice. Driven by remote sensing data, the prediction performance of IceFormer is far superior to traditional baseline models and machine learning models. The root mean square error (RMSE) and spatial anomaly correlation coefficient (SACC) of SIC (averaged within 45 days) are 6.62% and 0.80, respectively. The RMSE and SACC of SIT (averaged within 45 days) are 0.04 m and 0.93, respectively. IceFormer can successfully capture the sea ice evolution on a seasonal scale (especially in the melting season), and the monthly average SACC is stable at around 0.70. After comparison, the SIC prediction performance of IceFormer is better than that of a Coupled Ensemble Numerical Forecast Model from May to November. The information transfer analysis shows that the simultaneous prediction of SIC and SIT can effectively improve the predictability and explainability of sea ice.</description><subject>Arctic</subject><subject>Arctic zone</subject><subject>Atmospheric modeling</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Deep learning (DL)</subject><subject>Dynamic models</subject><subject>Ice cover</subject><subject>Ice environments</subject><subject>Ice thickness</subject><subject>Information transfer</subject><subject>Lead time</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Oceans</subject><subject>Performance prediction</subject><subject>Physics</subject><subject>Predictions</subject><subject>Predictive models</subject><subject>Real time</subject><subject>Remote sensing</subject><subject>remote sensing data-driven</subject><subject>Root-mean-square errors</subject><subject>Sea ice</subject><subject>sea ice concentration (SIC)</subject><subject>sea ice thickness (SIT)</subject><subject>spatiotemporal prediction</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEFLwzAYhoMoOKc_QPAQ8NyZL0nT5jimTmFDsfMmhCz9Kh1dU5P24L-3Yzt4-t7D8758PITcApsBMP2wWX4UM864nAmRplzkZ2QCaZonTEl5TiYMtEp4rvkluYpxxxjIFLIJ-ZrTorN97Xvcdz7Yhq6Hpq-jsw3SR8SOrtCGtm6_6dqX2NDKB1oM24g2-nbE3wOWtRsHWuorOg9jdLRAS18dXpOLyjYRb053Sj6fnzaLl2T1tnxdzFeJ41L1icykyFgmdA5YKW1Ti2UGmKlSKKlzIZhSW6VBukxIjjmARu2YTQWg1lKIKbk_7nbB_wwYe7PzQxi_i4ZrDlyC1Hyk4Ei54GMMWJku1Hsbfg0wc5BoDhLNQaI5SRw7d8dOjYj_eMk400z8AfJMa70</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Zheng, Qingyu</creator><creator>Wang, Ru</creator><creator>Han, Guijun</creator><creator>Li, Wei</creator><creator>Wang, Xuan</creator><creator>Shao, Qi</creator><creator>Wu, Xiaobo</creator><creator>Cao, Lige</creator><creator>Zhou, Gongfu</creator><creator>Hu, Song</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0000-5637-2872</orcidid><orcidid>https://orcid.org/0000-0001-6184-8476</orcidid><orcidid>https://orcid.org/0000-0001-6116-7718</orcidid><orcidid>https://orcid.org/0000-0001-6476-6927</orcidid><orcidid>https://orcid.org/0000-0001-8442-7148</orcidid><orcidid>https://orcid.org/0000-0002-8059-5010</orcidid></search><sort><creationdate>2024</creationdate><title>A Spatiotemporal Multiscale Deep Learning Model for Subseasonal Prediction of Arctic Sea Ice</title><author>Zheng, Qingyu ; Wang, Ru ; Han, Guijun ; Li, Wei ; Wang, Xuan ; Shao, Qi ; Wu, Xiaobo ; Cao, Lige ; Zhou, Gongfu ; Hu, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-47437073981ef69a5aed71e76d3649833066b6914c7342e8119e9c0a531e99433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arctic</topic><topic>Arctic zone</topic><topic>Atmospheric modeling</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Deep learning (DL)</topic><topic>Dynamic models</topic><topic>Ice cover</topic><topic>Ice environments</topic><topic>Ice thickness</topic><topic>Information transfer</topic><topic>Lead time</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Oceans</topic><topic>Performance prediction</topic><topic>Physics</topic><topic>Predictions</topic><topic>Predictive models</topic><topic>Real time</topic><topic>Remote sensing</topic><topic>remote sensing data-driven</topic><topic>Root-mean-square errors</topic><topic>Sea ice</topic><topic>sea ice concentration (SIC)</topic><topic>sea ice thickness (SIT)</topic><topic>spatiotemporal prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Qingyu</creatorcontrib><creatorcontrib>Wang, Ru</creatorcontrib><creatorcontrib>Han, Guijun</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Wang, Xuan</creatorcontrib><creatorcontrib>Shao, Qi</creatorcontrib><creatorcontrib>Wu, Xiaobo</creatorcontrib><creatorcontrib>Cao, Lige</creatorcontrib><creatorcontrib>Zhou, Gongfu</creatorcontrib><creatorcontrib>Hu, Song</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zheng, Qingyu</au><au>Wang, Ru</au><au>Han, Guijun</au><au>Li, Wei</au><au>Wang, Xuan</au><au>Shao, Qi</au><au>Wu, Xiaobo</au><au>Cao, Lige</au><au>Zhou, Gongfu</au><au>Hu, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Spatiotemporal Multiscale Deep Learning Model for Subseasonal Prediction of Arctic Sea Ice</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2024</date><risdate>2024</risdate><volume>62</volume><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Physics-based dynamical models can successfully predict short-term sea ice trends, but they struggle to provide reliable subseasonal sea ice predictions over shorter time periods and are not flexible enough to provide real-time/quasi-real-time predictions. Therefore, we use deep learning to establish a purely remote sensing data-driven Arctic sea ice prediction system, IceFormer. IceFormer is trained by high-quality Arctic reanalysis data and remote sensing observations. It can provide daily sea ice concentration (SIC) and sea ice thickness (SIT) predictions for the pan-Arctic region with a lead time of 45 days. We show that IceFormer advances lightweight multivariate forecasting of Arctic sea ice. Driven by remote sensing data, the prediction performance of IceFormer is far superior to traditional baseline models and machine learning models. The root mean square error (RMSE) and spatial anomaly correlation coefficient (SACC) of SIC (averaged within 45 days) are 6.62% and 0.80, respectively. The RMSE and SACC of SIT (averaged within 45 days) are 0.04 m and 0.93, respectively. IceFormer can successfully capture the sea ice evolution on a seasonal scale (especially in the melting season), and the monthly average SACC is stable at around 0.70. After comparison, the SIC prediction performance of IceFormer is better than that of a Coupled Ensemble Numerical Forecast Model from May to November. The information transfer analysis shows that the simultaneous prediction of SIC and SIT can effectively improve the predictability and explainability of sea ice.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2024.3355238</doi><tpages>22</tpages><orcidid>https://orcid.org/0009-0000-5637-2872</orcidid><orcidid>https://orcid.org/0000-0001-6184-8476</orcidid><orcidid>https://orcid.org/0000-0001-6116-7718</orcidid><orcidid>https://orcid.org/0000-0001-6476-6927</orcidid><orcidid>https://orcid.org/0000-0001-8442-7148</orcidid><orcidid>https://orcid.org/0000-0002-8059-5010</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2024, Vol.62, p.1-22
issn 0196-2892
1558-0644
language eng
recordid cdi_proquest_journals_2921241492
source IEEE Electronic Library (IEL)
subjects Arctic
Arctic zone
Atmospheric modeling
Correlation coefficient
Correlation coefficients
Data models
Deep learning
Deep learning (DL)
Dynamic models
Ice cover
Ice environments
Ice thickness
Information transfer
Lead time
Machine learning
Mathematical models
Numerical models
Oceans
Performance prediction
Physics
Predictions
Predictive models
Real time
Remote sensing
remote sensing data-driven
Root-mean-square errors
Sea ice
sea ice concentration (SIC)
sea ice thickness (SIT)
spatiotemporal prediction
title A Spatiotemporal Multiscale Deep Learning Model for Subseasonal Prediction of Arctic Sea Ice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A10%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Spatiotemporal%20Multiscale%20Deep%20Learning%20Model%20for%20Subseasonal%20Prediction%20of%20Arctic%20Sea%20Ice&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Zheng,%20Qingyu&rft.date=2024&rft.volume=62&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2024.3355238&rft_dat=%3Cproquest_RIE%3E2921241492%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921241492&rft_id=info:pmid/&rft_ieee_id=10402090&rfr_iscdi=true