DWSR: an architecture optimization framework for adaptive super-resolution neural networks based on meta-heuristics

Despite recent advancements in super-resolution neural network optimization, a fundamental challenge remains unresolved: as the number of parameters is reduced, the network’s performance significantly deteriorates. This paper presents a novel framework called the Depthwise Separable Convolution Supe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Artificial intelligence review 2024-01, Vol.57 (2), p.23, Article 23
Hauptverfasser: Chu, Shu-Chuan, Dou, Zhi-Chao, Pan, Jeng-Shyang, Kong, Lingping, Snášel, Václav, Watada, Junzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 23
container_title The Artificial intelligence review
container_volume 57
creator Chu, Shu-Chuan
Dou, Zhi-Chao
Pan, Jeng-Shyang
Kong, Lingping
Snášel, Václav
Watada, Junzo
description Despite recent advancements in super-resolution neural network optimization, a fundamental challenge remains unresolved: as the number of parameters is reduced, the network’s performance significantly deteriorates. This paper presents a novel framework called the Depthwise Separable Convolution Super-Resolution Neural Network Framework (DWSR) for optimizing super-resolution neural network architectures. The depthwise separable convolutions are introduced to reduce the number of parameters and minimize the impact on the performance of the super-resolution neural network. The proposed framework uses the RUNge Kutta optimizer (RUN) variant (MoBRUN) as the search method. MoBRUN is a multi-objective binary version of RUN, which balances multiple objectives when optimizing the neural network architecture. Experimental results on publicly available datasets indicate that the DWSR framework can reduce the number of parameters of the Residual Dense Network (RDN) model by 22.17% while suffering only a minor decrease of 0.018 in Peak Signal-to-Noise Ratio (PSNR), the framework can reduce the number of parameters of the Enhanced SRGAN (ESRGAN) model by 31.45% while losing only 0.08 PSNR. Additionally, the framework can reduce the number of parameters of the HAT model by 5.38% while losing only 0.02 PSNR.
doi_str_mv 10.1007/s10462-023-10648-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921236791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921236791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-c494e09b433dfdaf8c028c1bf86e1598038b69a9b55bc22834e417c4977740c83</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYsoOI7-AVcB19G82qTuxDcMCD5wGdL01uk4bWqSKvrrzcwIunJ1L_d851w4WXZIyTElRJ4ESkTBMGEcU1IIhcVWNqG55Fim-_affTfbC2FBCMmZ4JMsXDw_3J8i0yPj7byNYOPoAbkhtl37ZWLretR408GH86-ocR6Z2iTxHVAYB_DYQ3DLcc31MHqzTCOu4IAqE6BGSeggGjxPahtia8N-ttOYZYCDnznNnq4uH89v8Ozu-vb8bIYtpyJiK0oBpKwE53VTm0ZZwpSlVaMKoHmpCFdVUZqyyvPKMqa4AEFlckkpBbGKT7OjTe7g3dsIIeqFG32fXmpWMsp4IUuaKLahrHcheGj04NvO-E9NiV6Vqzfl6lSuXperRTLxjSkkuH8B_xv9j-sbXDt-iA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921236791</pqid></control><display><type>article</type><title>DWSR: an architecture optimization framework for adaptive super-resolution neural networks based on meta-heuristics</title><source>Springer Nature OA Free Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chu, Shu-Chuan ; Dou, Zhi-Chao ; Pan, Jeng-Shyang ; Kong, Lingping ; Snášel, Václav ; Watada, Junzo</creator><creatorcontrib>Chu, Shu-Chuan ; Dou, Zhi-Chao ; Pan, Jeng-Shyang ; Kong, Lingping ; Snášel, Václav ; Watada, Junzo</creatorcontrib><description>Despite recent advancements in super-resolution neural network optimization, a fundamental challenge remains unresolved: as the number of parameters is reduced, the network’s performance significantly deteriorates. This paper presents a novel framework called the Depthwise Separable Convolution Super-Resolution Neural Network Framework (DWSR) for optimizing super-resolution neural network architectures. The depthwise separable convolutions are introduced to reduce the number of parameters and minimize the impact on the performance of the super-resolution neural network. The proposed framework uses the RUNge Kutta optimizer (RUN) variant (MoBRUN) as the search method. MoBRUN is a multi-objective binary version of RUN, which balances multiple objectives when optimizing the neural network architecture. Experimental results on publicly available datasets indicate that the DWSR framework can reduce the number of parameters of the Residual Dense Network (RDN) model by 22.17% while suffering only a minor decrease of 0.018 in Peak Signal-to-Noise Ratio (PSNR), the framework can reduce the number of parameters of the Enhanced SRGAN (ESRGAN) model by 31.45% while losing only 0.08 PSNR. Additionally, the framework can reduce the number of parameters of the HAT model by 5.38% while losing only 0.02 PSNR.</description><identifier>ISSN: 1573-7462</identifier><identifier>ISSN: 0269-2821</identifier><identifier>EISSN: 1573-7462</identifier><identifier>DOI: 10.1007/s10462-023-10648-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Computer Science ; Heuristic ; Mathematical models ; Network management systems ; Neural networks ; Optimization ; Parameters ; Runge-Kutta method ; Signal to noise ratio</subject><ispartof>The Artificial intelligence review, 2024-01, Vol.57 (2), p.23, Article 23</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-c494e09b433dfdaf8c028c1bf86e1598038b69a9b55bc22834e417c4977740c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10462-023-10648-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10462-023-10648-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27922,27923,41118,41486,42187,42555,51317,51574</link.rule.ids></links><search><creatorcontrib>Chu, Shu-Chuan</creatorcontrib><creatorcontrib>Dou, Zhi-Chao</creatorcontrib><creatorcontrib>Pan, Jeng-Shyang</creatorcontrib><creatorcontrib>Kong, Lingping</creatorcontrib><creatorcontrib>Snášel, Václav</creatorcontrib><creatorcontrib>Watada, Junzo</creatorcontrib><title>DWSR: an architecture optimization framework for adaptive super-resolution neural networks based on meta-heuristics</title><title>The Artificial intelligence review</title><addtitle>Artif Intell Rev</addtitle><description>Despite recent advancements in super-resolution neural network optimization, a fundamental challenge remains unresolved: as the number of parameters is reduced, the network’s performance significantly deteriorates. This paper presents a novel framework called the Depthwise Separable Convolution Super-Resolution Neural Network Framework (DWSR) for optimizing super-resolution neural network architectures. The depthwise separable convolutions are introduced to reduce the number of parameters and minimize the impact on the performance of the super-resolution neural network. The proposed framework uses the RUNge Kutta optimizer (RUN) variant (MoBRUN) as the search method. MoBRUN is a multi-objective binary version of RUN, which balances multiple objectives when optimizing the neural network architecture. Experimental results on publicly available datasets indicate that the DWSR framework can reduce the number of parameters of the Residual Dense Network (RDN) model by 22.17% while suffering only a minor decrease of 0.018 in Peak Signal-to-Noise Ratio (PSNR), the framework can reduce the number of parameters of the Enhanced SRGAN (ESRGAN) model by 31.45% while losing only 0.08 PSNR. Additionally, the framework can reduce the number of parameters of the HAT model by 5.38% while losing only 0.02 PSNR.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Heuristic</subject><subject>Mathematical models</subject><subject>Network management systems</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Runge-Kutta method</subject><subject>Signal to noise ratio</subject><issn>1573-7462</issn><issn>0269-2821</issn><issn>1573-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtLxDAUhYsoOI7-AVcB19G82qTuxDcMCD5wGdL01uk4bWqSKvrrzcwIunJ1L_d851w4WXZIyTElRJ4ESkTBMGEcU1IIhcVWNqG55Fim-_affTfbC2FBCMmZ4JMsXDw_3J8i0yPj7byNYOPoAbkhtl37ZWLretR408GH86-ocR6Z2iTxHVAYB_DYQ3DLcc31MHqzTCOu4IAqE6BGSeggGjxPahtia8N-ttOYZYCDnznNnq4uH89v8Ozu-vb8bIYtpyJiK0oBpKwE53VTm0ZZwpSlVaMKoHmpCFdVUZqyyvPKMqa4AEFlckkpBbGKT7OjTe7g3dsIIeqFG32fXmpWMsp4IUuaKLahrHcheGj04NvO-E9NiV6Vqzfl6lSuXperRTLxjSkkuH8B_xv9j-sbXDt-iA</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>Chu, Shu-Chuan</creator><creator>Dou, Zhi-Chao</creator><creator>Pan, Jeng-Shyang</creator><creator>Kong, Lingping</creator><creator>Snášel, Václav</creator><creator>Watada, Junzo</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20240130</creationdate><title>DWSR: an architecture optimization framework for adaptive super-resolution neural networks based on meta-heuristics</title><author>Chu, Shu-Chuan ; Dou, Zhi-Chao ; Pan, Jeng-Shyang ; Kong, Lingping ; Snášel, Václav ; Watada, Junzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-c494e09b433dfdaf8c028c1bf86e1598038b69a9b55bc22834e417c4977740c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Heuristic</topic><topic>Mathematical models</topic><topic>Network management systems</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Runge-Kutta method</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, Shu-Chuan</creatorcontrib><creatorcontrib>Dou, Zhi-Chao</creatorcontrib><creatorcontrib>Pan, Jeng-Shyang</creatorcontrib><creatorcontrib>Kong, Lingping</creatorcontrib><creatorcontrib>Snášel, Václav</creatorcontrib><creatorcontrib>Watada, Junzo</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>The Artificial intelligence review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, Shu-Chuan</au><au>Dou, Zhi-Chao</au><au>Pan, Jeng-Shyang</au><au>Kong, Lingping</au><au>Snášel, Václav</au><au>Watada, Junzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DWSR: an architecture optimization framework for adaptive super-resolution neural networks based on meta-heuristics</atitle><jtitle>The Artificial intelligence review</jtitle><stitle>Artif Intell Rev</stitle><date>2024-01-30</date><risdate>2024</risdate><volume>57</volume><issue>2</issue><spage>23</spage><pages>23-</pages><artnum>23</artnum><issn>1573-7462</issn><issn>0269-2821</issn><eissn>1573-7462</eissn><abstract>Despite recent advancements in super-resolution neural network optimization, a fundamental challenge remains unresolved: as the number of parameters is reduced, the network’s performance significantly deteriorates. This paper presents a novel framework called the Depthwise Separable Convolution Super-Resolution Neural Network Framework (DWSR) for optimizing super-resolution neural network architectures. The depthwise separable convolutions are introduced to reduce the number of parameters and minimize the impact on the performance of the super-resolution neural network. The proposed framework uses the RUNge Kutta optimizer (RUN) variant (MoBRUN) as the search method. MoBRUN is a multi-objective binary version of RUN, which balances multiple objectives when optimizing the neural network architecture. Experimental results on publicly available datasets indicate that the DWSR framework can reduce the number of parameters of the Residual Dense Network (RDN) model by 22.17% while suffering only a minor decrease of 0.018 in Peak Signal-to-Noise Ratio (PSNR), the framework can reduce the number of parameters of the Enhanced SRGAN (ESRGAN) model by 31.45% while losing only 0.08 PSNR. Additionally, the framework can reduce the number of parameters of the HAT model by 5.38% while losing only 0.02 PSNR.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10462-023-10648-4</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1573-7462
ispartof The Artificial intelligence review, 2024-01, Vol.57 (2), p.23, Article 23
issn 1573-7462
0269-2821
1573-7462
language eng
recordid cdi_proquest_journals_2921236791
source Springer Nature OA Free Journals; SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computer Science
Heuristic
Mathematical models
Network management systems
Neural networks
Optimization
Parameters
Runge-Kutta method
Signal to noise ratio
title DWSR: an architecture optimization framework for adaptive super-resolution neural networks based on meta-heuristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DWSR:%20an%20architecture%20optimization%20framework%20for%20adaptive%20super-resolution%20neural%20networks%20based%20on%20meta-heuristics&rft.jtitle=The%20Artificial%20intelligence%20review&rft.au=Chu,%20Shu-Chuan&rft.date=2024-01-30&rft.volume=57&rft.issue=2&rft.spage=23&rft.pages=23-&rft.artnum=23&rft.issn=1573-7462&rft.eissn=1573-7462&rft_id=info:doi/10.1007/s10462-023-10648-4&rft_dat=%3Cproquest_cross%3E2921236791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921236791&rft_id=info:pmid/&rfr_iscdi=true