Spatial and Seasonal Change Detection in Vegetation Cover Using Time-Series Landsat Satellite Images and Machine Learning Methods

The present study used time-series Landsat-8 and 9 satellite datasets of June to February 2016–2017 and 2021–2022 to classify and detect the changes in vegetation covers. The studied Akole region of Ahmednagar district of Maharashtra, India, is vulnerable to drought conditions in a diverse environme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN computer science 2023-05, Vol.4 (3), p.254, Article 254
Hauptverfasser: Mullapudi, Archana, Vibhute, Amol D., Mali, Shankar, Patil, Chandrashekhar H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 254
container_title SN computer science
container_volume 4
creator Mullapudi, Archana
Vibhute, Amol D.
Mali, Shankar
Patil, Chandrashekhar H.
description The present study used time-series Landsat-8 and 9 satellite datasets of June to February 2016–2017 and 2021–2022 to classify and detect the changes in vegetation covers. The studied Akole region of Ahmednagar district of Maharashtra, India, is vulnerable to drought conditions in a diverse environment. The spectral features based on the Normalized Difference Vegetation Index (NDVI) were calculated. Machine learning algorithms such as k-means clustering and Iterative Self-Organizing Data Analysis (ISODATA) clustering have also been applied to time-series NDVI images to classify the vegetation cover and detect the changes in vegetation. Furthermore, to identify different drought clusters. The results of the NDVI values ranged from 0 0.25 to 0.99 and 0.31 to 0.75 for 2016–2017 and 2021–2022, respectively. The classification results show that most of the areas were occupied by healthy vegetation in 2021–2022. In 2016–2017, the vegetations were less due to low rainfall. Regional planners and decision makers can use the present study to identify vegetation, assess and monitor drought severity, and predict future scenarios.
doi_str_mv 10.1007/s42979-023-01710-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921227984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921227984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2347-cb937695414c0f200cb71d4beb73694d8734cede525693ae850016a2f27e97bc3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhCMEElXpC3CyxDmwdpw4PqLyV6kVh7RcLcfZpq7apNguEkfeHLdFghOn3dHOjLRfklxTuKUA4s5zJoVMgWUpUEEhFWfJgBUFTUsJ4vzPfpmMvF8DAMuB8yIfJF_VTgerN0R3DalQ-76LYrzSXYvkAQOaYPuO2I68YYtBH9W4_0BHFt52LZnbLaYVOoueTGOJ14FUOuBmYwOSyVa38XAon2mzsh2SKWrXHZIzDKu-8VfJxVJvPI5-5jBZPD3Oxy_p9PV5Mr6fpoZlXKSmlpkoZM4pN7BkAKYWtOE11iIrJG9KkXGDDeYsL2SmscwBaKHZkgmUojbZMLk59e5c_75HH9S637v4rVdMMsqYkCWPLnZyGdd773Cpds5utftUFNSBtjrRVpG2OtJWIoayU8hHcwTnfqv_SX0D_UWCKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921227984</pqid></control><display><type>article</type><title>Spatial and Seasonal Change Detection in Vegetation Cover Using Time-Series Landsat Satellite Images and Machine Learning Methods</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Mullapudi, Archana ; Vibhute, Amol D. ; Mali, Shankar ; Patil, Chandrashekhar H.</creator><creatorcontrib>Mullapudi, Archana ; Vibhute, Amol D. ; Mali, Shankar ; Patil, Chandrashekhar H.</creatorcontrib><description>The present study used time-series Landsat-8 and 9 satellite datasets of June to February 2016–2017 and 2021–2022 to classify and detect the changes in vegetation covers. The studied Akole region of Ahmednagar district of Maharashtra, India, is vulnerable to drought conditions in a diverse environment. The spectral features based on the Normalized Difference Vegetation Index (NDVI) were calculated. Machine learning algorithms such as k-means clustering and Iterative Self-Organizing Data Analysis (ISODATA) clustering have also been applied to time-series NDVI images to classify the vegetation cover and detect the changes in vegetation. Furthermore, to identify different drought clusters. The results of the NDVI values ranged from 0 0.25 to 0.99 and 0.31 to 0.75 for 2016–2017 and 2021–2022, respectively. The classification results show that most of the areas were occupied by healthy vegetation in 2021–2022. In 2016–2017, the vegetations were less due to low rainfall. Regional planners and decision makers can use the present study to identify vegetation, assess and monitor drought severity, and predict future scenarios.</description><identifier>ISSN: 2661-8907</identifier><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-023-01710-7</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Advances in Applied Image Processing and Pattern Recognition ; Agriculture ; Algorithms ; Change detection ; Classification ; Cluster analysis ; Clustering ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Data analysis ; Data Structures and Information Theory ; Datasets ; Drought ; Image classification ; Information Systems and Communication Service ; Landsat satellites ; Machine learning ; Methods ; Normalized difference vegetative index ; Original Research ; Pattern Recognition and Graphics ; Rain ; Rainfall ; Remote sensing ; Satellite imagery ; Sensors ; Software Engineering/Programming and Operating Systems ; Time series ; Vector quantization ; Vegetation ; Vision</subject><ispartof>SN computer science, 2023-05, Vol.4 (3), p.254, Article 254</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2347-cb937695414c0f200cb71d4beb73694d8734cede525693ae850016a2f27e97bc3</citedby><cites>FETCH-LOGICAL-c2347-cb937695414c0f200cb71d4beb73694d8734cede525693ae850016a2f27e97bc3</cites><orcidid>0000-0002-3605-7450</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-023-01710-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2921227984?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21386,27922,27923,33742,41486,42555,43803,51317,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Mullapudi, Archana</creatorcontrib><creatorcontrib>Vibhute, Amol D.</creatorcontrib><creatorcontrib>Mali, Shankar</creatorcontrib><creatorcontrib>Patil, Chandrashekhar H.</creatorcontrib><title>Spatial and Seasonal Change Detection in Vegetation Cover Using Time-Series Landsat Satellite Images and Machine Learning Methods</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>The present study used time-series Landsat-8 and 9 satellite datasets of June to February 2016–2017 and 2021–2022 to classify and detect the changes in vegetation covers. The studied Akole region of Ahmednagar district of Maharashtra, India, is vulnerable to drought conditions in a diverse environment. The spectral features based on the Normalized Difference Vegetation Index (NDVI) were calculated. Machine learning algorithms such as k-means clustering and Iterative Self-Organizing Data Analysis (ISODATA) clustering have also been applied to time-series NDVI images to classify the vegetation cover and detect the changes in vegetation. Furthermore, to identify different drought clusters. The results of the NDVI values ranged from 0 0.25 to 0.99 and 0.31 to 0.75 for 2016–2017 and 2021–2022, respectively. The classification results show that most of the areas were occupied by healthy vegetation in 2021–2022. In 2016–2017, the vegetations were less due to low rainfall. Regional planners and decision makers can use the present study to identify vegetation, assess and monitor drought severity, and predict future scenarios.</description><subject>Advances in Applied Image Processing and Pattern Recognition</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Change detection</subject><subject>Classification</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data analysis</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Drought</subject><subject>Image classification</subject><subject>Information Systems and Communication Service</subject><subject>Landsat satellites</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Normalized difference vegetative index</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Rain</subject><subject>Rainfall</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><subject>Sensors</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Time series</subject><subject>Vector quantization</subject><subject>Vegetation</subject><subject>Vision</subject><issn>2661-8907</issn><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kM1OwzAQhCMEElXpC3CyxDmwdpw4PqLyV6kVh7RcLcfZpq7apNguEkfeHLdFghOn3dHOjLRfklxTuKUA4s5zJoVMgWUpUEEhFWfJgBUFTUsJ4vzPfpmMvF8DAMuB8yIfJF_VTgerN0R3DalQ-76LYrzSXYvkAQOaYPuO2I68YYtBH9W4_0BHFt52LZnbLaYVOoueTGOJ14FUOuBmYwOSyVa38XAon2mzsh2SKWrXHZIzDKu-8VfJxVJvPI5-5jBZPD3Oxy_p9PV5Mr6fpoZlXKSmlpkoZM4pN7BkAKYWtOE11iIrJG9KkXGDDeYsL2SmscwBaKHZkgmUojbZMLk59e5c_75HH9S637v4rVdMMsqYkCWPLnZyGdd773Cpds5utftUFNSBtjrRVpG2OtJWIoayU8hHcwTnfqv_SX0D_UWCKw</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Mullapudi, Archana</creator><creator>Vibhute, Amol D.</creator><creator>Mali, Shankar</creator><creator>Patil, Chandrashekhar H.</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-3605-7450</orcidid></search><sort><creationdate>20230501</creationdate><title>Spatial and Seasonal Change Detection in Vegetation Cover Using Time-Series Landsat Satellite Images and Machine Learning Methods</title><author>Mullapudi, Archana ; Vibhute, Amol D. ; Mali, Shankar ; Patil, Chandrashekhar H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2347-cb937695414c0f200cb71d4beb73694d8734cede525693ae850016a2f27e97bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advances in Applied Image Processing and Pattern Recognition</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Change detection</topic><topic>Classification</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data analysis</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Drought</topic><topic>Image classification</topic><topic>Information Systems and Communication Service</topic><topic>Landsat satellites</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Normalized difference vegetative index</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Rain</topic><topic>Rainfall</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><topic>Sensors</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Time series</topic><topic>Vector quantization</topic><topic>Vegetation</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mullapudi, Archana</creatorcontrib><creatorcontrib>Vibhute, Amol D.</creatorcontrib><creatorcontrib>Mali, Shankar</creatorcontrib><creatorcontrib>Patil, Chandrashekhar H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mullapudi, Archana</au><au>Vibhute, Amol D.</au><au>Mali, Shankar</au><au>Patil, Chandrashekhar H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatial and Seasonal Change Detection in Vegetation Cover Using Time-Series Landsat Satellite Images and Machine Learning Methods</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>4</volume><issue>3</issue><spage>254</spage><pages>254-</pages><artnum>254</artnum><issn>2661-8907</issn><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>The present study used time-series Landsat-8 and 9 satellite datasets of June to February 2016–2017 and 2021–2022 to classify and detect the changes in vegetation covers. The studied Akole region of Ahmednagar district of Maharashtra, India, is vulnerable to drought conditions in a diverse environment. The spectral features based on the Normalized Difference Vegetation Index (NDVI) were calculated. Machine learning algorithms such as k-means clustering and Iterative Self-Organizing Data Analysis (ISODATA) clustering have also been applied to time-series NDVI images to classify the vegetation cover and detect the changes in vegetation. Furthermore, to identify different drought clusters. The results of the NDVI values ranged from 0 0.25 to 0.99 and 0.31 to 0.75 for 2016–2017 and 2021–2022, respectively. The classification results show that most of the areas were occupied by healthy vegetation in 2021–2022. In 2016–2017, the vegetations were less due to low rainfall. Regional planners and decision makers can use the present study to identify vegetation, assess and monitor drought severity, and predict future scenarios.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42979-023-01710-7</doi><orcidid>https://orcid.org/0000-0002-3605-7450</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2661-8907
ispartof SN computer science, 2023-05, Vol.4 (3), p.254, Article 254
issn 2661-8907
2662-995X
2661-8907
language eng
recordid cdi_proquest_journals_2921227984
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Advances in Applied Image Processing and Pattern Recognition
Agriculture
Algorithms
Change detection
Classification
Cluster analysis
Clustering
Computer Imaging
Computer Science
Computer Systems Organization and Communication Networks
Data analysis
Data Structures and Information Theory
Datasets
Drought
Image classification
Information Systems and Communication Service
Landsat satellites
Machine learning
Methods
Normalized difference vegetative index
Original Research
Pattern Recognition and Graphics
Rain
Rainfall
Remote sensing
Satellite imagery
Sensors
Software Engineering/Programming and Operating Systems
Time series
Vector quantization
Vegetation
Vision
title Spatial and Seasonal Change Detection in Vegetation Cover Using Time-Series Landsat Satellite Images and Machine Learning Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatial%20and%20Seasonal%20Change%20Detection%20in%20Vegetation%20Cover%20Using%20Time-Series%20Landsat%20Satellite%20Images%20and%20Machine%20Learning%20Methods&rft.jtitle=SN%20computer%20science&rft.au=Mullapudi,%20Archana&rft.date=2023-05-01&rft.volume=4&rft.issue=3&rft.spage=254&rft.pages=254-&rft.artnum=254&rft.issn=2661-8907&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-023-01710-7&rft_dat=%3Cproquest_cross%3E2921227984%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921227984&rft_id=info:pmid/&rfr_iscdi=true