Epileptic Seizure Classification and Feature Optimization Technique Using Grey Wolf Algorithm on Dynamic Datasets
Epileptic seizure (ES) is caused due to the unpredictable and imbalanced discharge of electric signals causing a muscle ruptures. The instance is critical if unattended medically. In the proposed paper, a feature optimization and classification technique is discussed. The technique is based on the d...
Gespeichert in:
Veröffentlicht in: | SN computer science 2023-05, Vol.4 (3), p.311, Article 311 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 311 |
container_title | SN computer science |
container_volume | 4 |
creator | Thanuja, K. Shoba, M. Patil, Kirankumari |
description | Epileptic seizure (ES) is caused due to the unpredictable and imbalanced discharge of electric signals causing a muscle ruptures. The instance is critical if unattended medically. In the proposed paper, a feature optimization and classification technique is discussed. The technique is based on the dynamic feature set extraction and producing cluster based on categorization labels. The technique is structured on grey-wolf optimization algorithm in identifying the highlighted feature–attribute co-relationship. The technique has processed attribute inter-connectivity coordinates in creating a virtual mapping and labeling of cluster-heads to provide seizure severity. The technique has successfully adopted multi-dimensional datasets for improved performance and calibration under inter-dependent attribute-feature mapping. The technique has achieved 96.76% accuracy on trained datasets with 98.76% sensitivity and 97.86% in precision on epileptic seizure classification for decision-making. |
doi_str_mv | 10.1007/s42979-023-01741-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921227822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921227822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2340-27d2847ef0cdc3ffd5a2e57aa40d75f08623a9fc698c36eb8e26feb66131f10e3</originalsourceid><addsrcrecordid>eNp9kE9PwzAMxSMEEgj2BThF4lxw3D9pj9NgA2nSDoA4RlnqbEFduyXdYfv0ZBQJTpxsyb_3bD_GbgXcCwD5EDKsZJUApgkImYkEztgVFoVIygrk-Z_-ko1C-AQAzCHLivyK7Z62rqFt7wx_JXfce-KTRofgrDO6d13LdVvzKen-NFpEcOOOw-CNzLp1uz3x9-DaFZ95OvCPrrF83Kw67_r1hkfs8dDqTbR_1L0O1IcbdmF1E2j0U6_Z-_TpbfKczBezl8l4nhhMM0hQ1lhmkiyY2qTW1rlGyqXWGdQyt1AWmOrKmqIqTVrQsiQsLC3jp6mwAii9ZneD79Z38cjQq89u79u4UmGFAlGWiJHCgTK-C8GTVVvvNtoflAB1SlcN6aqYrvpOV0EUpYMoRLhdkf-1_kf1BcJefkY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921227822</pqid></control><display><type>article</type><title>Epileptic Seizure Classification and Feature Optimization Technique Using Grey Wolf Algorithm on Dynamic Datasets</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Thanuja, K. ; Shoba, M. ; Patil, Kirankumari</creator><creatorcontrib>Thanuja, K. ; Shoba, M. ; Patil, Kirankumari</creatorcontrib><description>Epileptic seizure (ES) is caused due to the unpredictable and imbalanced discharge of electric signals causing a muscle ruptures. The instance is critical if unattended medically. In the proposed paper, a feature optimization and classification technique is discussed. The technique is based on the dynamic feature set extraction and producing cluster based on categorization labels. The technique is structured on grey-wolf optimization algorithm in identifying the highlighted feature–attribute co-relationship. The technique has processed attribute inter-connectivity coordinates in creating a virtual mapping and labeling of cluster-heads to provide seizure severity. The technique has successfully adopted multi-dimensional datasets for improved performance and calibration under inter-dependent attribute-feature mapping. The technique has achieved 96.76% accuracy on trained datasets with 98.76% sensitivity and 97.86% in precision on epileptic seizure classification for decision-making.</description><identifier>ISSN: 2661-8907</identifier><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-023-01741-0</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Advances in Computational Approaches for Image Processing ; Algorithms ; Classification ; Cloud Applications and Network Security ; Clusters ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Convulsions & seizures ; Data Structures and Information Theory ; Datasets ; Epilepsy ; Information Systems and Communication Service ; Labels ; Machine learning ; Mapping ; Neural networks ; Optimization ; Optimization algorithms ; Optimization techniques ; Original Research ; Pattern Recognition and Graphics ; Software Engineering/Programming and Operating Systems ; Value added ; Vision ; Wireless Networks</subject><ispartof>SN computer science, 2023-05, Vol.4 (3), p.311, Article 311</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2340-27d2847ef0cdc3ffd5a2e57aa40d75f08623a9fc698c36eb8e26feb66131f10e3</citedby><cites>FETCH-LOGICAL-c2340-27d2847ef0cdc3ffd5a2e57aa40d75f08623a9fc698c36eb8e26feb66131f10e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-023-01741-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2921227822?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Thanuja, K.</creatorcontrib><creatorcontrib>Shoba, M.</creatorcontrib><creatorcontrib>Patil, Kirankumari</creatorcontrib><title>Epileptic Seizure Classification and Feature Optimization Technique Using Grey Wolf Algorithm on Dynamic Datasets</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>Epileptic seizure (ES) is caused due to the unpredictable and imbalanced discharge of electric signals causing a muscle ruptures. The instance is critical if unattended medically. In the proposed paper, a feature optimization and classification technique is discussed. The technique is based on the dynamic feature set extraction and producing cluster based on categorization labels. The technique is structured on grey-wolf optimization algorithm in identifying the highlighted feature–attribute co-relationship. The technique has processed attribute inter-connectivity coordinates in creating a virtual mapping and labeling of cluster-heads to provide seizure severity. The technique has successfully adopted multi-dimensional datasets for improved performance and calibration under inter-dependent attribute-feature mapping. The technique has achieved 96.76% accuracy on trained datasets with 98.76% sensitivity and 97.86% in precision on epileptic seizure classification for decision-making.</description><subject>Advances in Computational Approaches for Image Processing</subject><subject>Algorithms</subject><subject>Classification</subject><subject>Cloud Applications and Network Security</subject><subject>Clusters</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Convulsions & seizures</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Epilepsy</subject><subject>Information Systems and Communication Service</subject><subject>Labels</subject><subject>Machine learning</subject><subject>Mapping</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Optimization techniques</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Value added</subject><subject>Vision</subject><subject>Wireless Networks</subject><issn>2661-8907</issn><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9PwzAMxSMEEgj2BThF4lxw3D9pj9NgA2nSDoA4RlnqbEFduyXdYfv0ZBQJTpxsyb_3bD_GbgXcCwD5EDKsZJUApgkImYkEztgVFoVIygrk-Z_-ko1C-AQAzCHLivyK7Z62rqFt7wx_JXfce-KTRofgrDO6d13LdVvzKen-NFpEcOOOw-CNzLp1uz3x9-DaFZ95OvCPrrF83Kw67_r1hkfs8dDqTbR_1L0O1IcbdmF1E2j0U6_Z-_TpbfKczBezl8l4nhhMM0hQ1lhmkiyY2qTW1rlGyqXWGdQyt1AWmOrKmqIqTVrQsiQsLC3jp6mwAii9ZneD79Z38cjQq89u79u4UmGFAlGWiJHCgTK-C8GTVVvvNtoflAB1SlcN6aqYrvpOV0EUpYMoRLhdkf-1_kf1BcJefkY</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Thanuja, K.</creator><creator>Shoba, M.</creator><creator>Patil, Kirankumari</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230501</creationdate><title>Epileptic Seizure Classification and Feature Optimization Technique Using Grey Wolf Algorithm on Dynamic Datasets</title><author>Thanuja, K. ; Shoba, M. ; Patil, Kirankumari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2340-27d2847ef0cdc3ffd5a2e57aa40d75f08623a9fc698c36eb8e26feb66131f10e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advances in Computational Approaches for Image Processing</topic><topic>Algorithms</topic><topic>Classification</topic><topic>Cloud Applications and Network Security</topic><topic>Clusters</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Convulsions & seizures</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Epilepsy</topic><topic>Information Systems and Communication Service</topic><topic>Labels</topic><topic>Machine learning</topic><topic>Mapping</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Optimization techniques</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Value added</topic><topic>Vision</topic><topic>Wireless Networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thanuja, K.</creatorcontrib><creatorcontrib>Shoba, M.</creatorcontrib><creatorcontrib>Patil, Kirankumari</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thanuja, K.</au><au>Shoba, M.</au><au>Patil, Kirankumari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epileptic Seizure Classification and Feature Optimization Technique Using Grey Wolf Algorithm on Dynamic Datasets</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>4</volume><issue>3</issue><spage>311</spage><pages>311-</pages><artnum>311</artnum><issn>2661-8907</issn><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>Epileptic seizure (ES) is caused due to the unpredictable and imbalanced discharge of electric signals causing a muscle ruptures. The instance is critical if unattended medically. In the proposed paper, a feature optimization and classification technique is discussed. The technique is based on the dynamic feature set extraction and producing cluster based on categorization labels. The technique is structured on grey-wolf optimization algorithm in identifying the highlighted feature–attribute co-relationship. The technique has processed attribute inter-connectivity coordinates in creating a virtual mapping and labeling of cluster-heads to provide seizure severity. The technique has successfully adopted multi-dimensional datasets for improved performance and calibration under inter-dependent attribute-feature mapping. The technique has achieved 96.76% accuracy on trained datasets with 98.76% sensitivity and 97.86% in precision on epileptic seizure classification for decision-making.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42979-023-01741-0</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2661-8907 |
ispartof | SN computer science, 2023-05, Vol.4 (3), p.311, Article 311 |
issn | 2661-8907 2662-995X 2661-8907 |
language | eng |
recordid | cdi_proquest_journals_2921227822 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Advances in Computational Approaches for Image Processing Algorithms Classification Cloud Applications and Network Security Clusters Computer Imaging Computer Science Computer Systems Organization and Communication Networks Convulsions & seizures Data Structures and Information Theory Datasets Epilepsy Information Systems and Communication Service Labels Machine learning Mapping Neural networks Optimization Optimization algorithms Optimization techniques Original Research Pattern Recognition and Graphics Software Engineering/Programming and Operating Systems Value added Vision Wireless Networks |
title | Epileptic Seizure Classification and Feature Optimization Technique Using Grey Wolf Algorithm on Dynamic Datasets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T21%3A29%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epileptic%20Seizure%20Classification%20and%20Feature%20Optimization%20Technique%20Using%20Grey%20Wolf%20Algorithm%20on%20Dynamic%20Datasets&rft.jtitle=SN%20computer%20science&rft.au=Thanuja,%20K.&rft.date=2023-05-01&rft.volume=4&rft.issue=3&rft.spage=311&rft.pages=311-&rft.artnum=311&rft.issn=2661-8907&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-023-01741-0&rft_dat=%3Cproquest_cross%3E2921227822%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921227822&rft_id=info:pmid/&rfr_iscdi=true |