Dual-template synthesis of interconnected 3D hollow N-doped carbon network for electrochemical application
Recently, hollow carbon spheres (HCS) have aroused great interests in the field of energy storage and conversion owing to their unique morphology, structure and other charming properties. Nevertheless, unsatisfactory electrical conductivity and relatively poor volumetric energy density caused by ine...
Gespeichert in:
Veröffentlicht in: | Carbon Letters 2023-03, Vol.33 (2), p.409-418 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 418 |
---|---|
container_issue | 2 |
container_start_page | 409 |
container_title | Carbon Letters |
container_volume | 33 |
creator | Chen, Liang Yang, Lanyun Xu, Chenxi Chen, Kechun Wang, Wei Yang, Liming Hou, Zhaohui |
description | Recently, hollow carbon spheres (HCS) have aroused great interests in the field of energy storage and conversion owing to their unique morphology, structure and other charming properties. Nevertheless, unsatisfactory electrical conductivity and relatively poor volumetric energy density caused by inevitable gaps between discrete carbon spheres greatly impede the practical application of HCS. In this work, for the first time we propose a novel dual-template strategy and successfully fabricate interconnected 3D hollow N-doped carbon network (HNCN) by a facile and scalable pyrolysis process. By systematical characterization and analysis, it can be found that HNCN is assembled by HCS and lots of mesoporous carbon. Compared to the counterparts, the obtained HNCN exhibits unique 3D interconnected architecture, larger specific surface area, hierarchical meso/macropore structure, higher structure defects, higher N doping amount and more optimized N configurations (especially for pyridinic-N and graphitic-N). As a result, these advantageous features endow HNCN with remarkably promoted electrochemical performance for supercapacitor and oxygen reduction reaction. Clearly, our proposed dual-template strategy provides a good guidance on overcoming the intrinsic shortcomings of HCS, which undoubtedly broadens their application in energy storage and conversion. |
doi_str_mv | 10.1007/s42823-022-00429-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_korea</sourceid><recordid>TN_cdi_proquest_journals_2921199848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921199848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-4acd2949461ccd14413adb68adfc6930f2c2298df5b0e69b27982de8c968ba1b3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA52gySXc3R2n9AtGLnkM2m7XbbpM1SSn990ZXqCdPMwzPO8M8CF0yes0oLW-igAo4oQCEUgGSiBM0AeCcCCmrUzRhsiyIgDk7R7MYuzqHOJWUFxO0Xu50T5LdDr1OFseDSysbu4h9izuXbDDeOWuSbTBf4pXve7_HL6TxQ54YHWrvsLNp78MGtz5g22c4eLOy287oHuth6HOTOu8u0Fmr-2hnv3WK3u_v3haP5Pn14Wlx-0wMF2UiQpsGpJCiYMY0TAjGdVMXlW5aU0hOWzAAsmraeU1tIWsoZQWNrYwsqlqzmk_R1bh3CP5zZ2NSa78LLp9UIIGx7ERUR2rjg9XR5Nd0OJIig0xmCkbKBB9jsK0aQrfV4aAYVd_y1ShfZfnqR74SOcTHUMyw-7B_1v6T-gJXqYi3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921199848</pqid></control><display><type>article</type><title>Dual-template synthesis of interconnected 3D hollow N-doped carbon network for electrochemical application</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Chen, Liang ; Yang, Lanyun ; Xu, Chenxi ; Chen, Kechun ; Wang, Wei ; Yang, Liming ; Hou, Zhaohui</creator><creatorcontrib>Chen, Liang ; Yang, Lanyun ; Xu, Chenxi ; Chen, Kechun ; Wang, Wei ; Yang, Liming ; Hou, Zhaohui</creatorcontrib><description>Recently, hollow carbon spheres (HCS) have aroused great interests in the field of energy storage and conversion owing to their unique morphology, structure and other charming properties. Nevertheless, unsatisfactory electrical conductivity and relatively poor volumetric energy density caused by inevitable gaps between discrete carbon spheres greatly impede the practical application of HCS. In this work, for the first time we propose a novel dual-template strategy and successfully fabricate interconnected 3D hollow N-doped carbon network (HNCN) by a facile and scalable pyrolysis process. By systematical characterization and analysis, it can be found that HNCN is assembled by HCS and lots of mesoporous carbon. Compared to the counterparts, the obtained HNCN exhibits unique 3D interconnected architecture, larger specific surface area, hierarchical meso/macropore structure, higher structure defects, higher N doping amount and more optimized N configurations (especially for pyridinic-N and graphitic-N). As a result, these advantageous features endow HNCN with remarkably promoted electrochemical performance for supercapacitor and oxygen reduction reaction. Clearly, our proposed dual-template strategy provides a good guidance on overcoming the intrinsic shortcomings of HCS, which undoubtedly broadens their application in energy storage and conversion.</description><identifier>ISSN: 1976-4251</identifier><identifier>EISSN: 2233-4998</identifier><identifier>DOI: 10.1007/s42823-022-00429-4</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Carbon ; Characterization and Evaluation of Materials ; Chemical reduction ; Chemistry and Materials Science ; Electrical conductivity ; Electrical resistivity ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Electrons ; Energy storage ; Etching ; Materials Engineering ; Materials Science ; Nanoparticles ; Nanotechnology ; Original Article ; Oxygen reduction reactions ; Pyrolysis ; Silica ; Spheres</subject><ispartof>Carbon Letters, 2023-03, Vol.33 (2), p.409-418</ispartof><rights>The Author(s), under exclusive licence to Korean Carbon Society 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-4acd2949461ccd14413adb68adfc6930f2c2298df5b0e69b27982de8c968ba1b3</citedby><cites>FETCH-LOGICAL-c347t-4acd2949461ccd14413adb68adfc6930f2c2298df5b0e69b27982de8c968ba1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2921199848?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Yang, Lanyun</creatorcontrib><creatorcontrib>Xu, Chenxi</creatorcontrib><creatorcontrib>Chen, Kechun</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Yang, Liming</creatorcontrib><creatorcontrib>Hou, Zhaohui</creatorcontrib><title>Dual-template synthesis of interconnected 3D hollow N-doped carbon network for electrochemical application</title><title>Carbon Letters</title><addtitle>Carbon Lett</addtitle><description>Recently, hollow carbon spheres (HCS) have aroused great interests in the field of energy storage and conversion owing to their unique morphology, structure and other charming properties. Nevertheless, unsatisfactory electrical conductivity and relatively poor volumetric energy density caused by inevitable gaps between discrete carbon spheres greatly impede the practical application of HCS. In this work, for the first time we propose a novel dual-template strategy and successfully fabricate interconnected 3D hollow N-doped carbon network (HNCN) by a facile and scalable pyrolysis process. By systematical characterization and analysis, it can be found that HNCN is assembled by HCS and lots of mesoporous carbon. Compared to the counterparts, the obtained HNCN exhibits unique 3D interconnected architecture, larger specific surface area, hierarchical meso/macropore structure, higher structure defects, higher N doping amount and more optimized N configurations (especially for pyridinic-N and graphitic-N). As a result, these advantageous features endow HNCN with remarkably promoted electrochemical performance for supercapacitor and oxygen reduction reaction. Clearly, our proposed dual-template strategy provides a good guidance on overcoming the intrinsic shortcomings of HCS, which undoubtedly broadens their application in energy storage and conversion.</description><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical reduction</subject><subject>Chemistry and Materials Science</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrons</subject><subject>Energy storage</subject><subject>Etching</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Original Article</subject><subject>Oxygen reduction reactions</subject><subject>Pyrolysis</subject><subject>Silica</subject><subject>Spheres</subject><issn>1976-4251</issn><issn>2233-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LAzEQhoMoWGr_gKeA52gySXc3R2n9AtGLnkM2m7XbbpM1SSn990ZXqCdPMwzPO8M8CF0yes0oLW-igAo4oQCEUgGSiBM0AeCcCCmrUzRhsiyIgDk7R7MYuzqHOJWUFxO0Xu50T5LdDr1OFseDSysbu4h9izuXbDDeOWuSbTBf4pXve7_HL6TxQ54YHWrvsLNp78MGtz5g22c4eLOy287oHuth6HOTOu8u0Fmr-2hnv3WK3u_v3haP5Pn14Wlx-0wMF2UiQpsGpJCiYMY0TAjGdVMXlW5aU0hOWzAAsmraeU1tIWsoZQWNrYwsqlqzmk_R1bh3CP5zZ2NSa78LLp9UIIGx7ERUR2rjg9XR5Nd0OJIig0xmCkbKBB9jsK0aQrfV4aAYVd_y1ShfZfnqR74SOcTHUMyw-7B_1v6T-gJXqYi3</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Chen, Liang</creator><creator>Yang, Lanyun</creator><creator>Xu, Chenxi</creator><creator>Chen, Kechun</creator><creator>Wang, Wei</creator><creator>Yang, Liming</creator><creator>Hou, Zhaohui</creator><general>Springer Nature Singapore</general><general>한국탄소학회</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>KROLR</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20230301</creationdate><title>Dual-template synthesis of interconnected 3D hollow N-doped carbon network for electrochemical application</title><author>Chen, Liang ; Yang, Lanyun ; Xu, Chenxi ; Chen, Kechun ; Wang, Wei ; Yang, Liming ; Hou, Zhaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-4acd2949461ccd14413adb68adfc6930f2c2298df5b0e69b27982de8c968ba1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical reduction</topic><topic>Chemistry and Materials Science</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrons</topic><topic>Energy storage</topic><topic>Etching</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Original Article</topic><topic>Oxygen reduction reactions</topic><topic>Pyrolysis</topic><topic>Silica</topic><topic>Spheres</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Liang</creatorcontrib><creatorcontrib>Yang, Lanyun</creatorcontrib><creatorcontrib>Xu, Chenxi</creatorcontrib><creatorcontrib>Chen, Kechun</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Yang, Liming</creatorcontrib><creatorcontrib>Hou, Zhaohui</creatorcontrib><collection>CrossRef</collection><collection>Korea Scholar</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Carbon Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Liang</au><au>Yang, Lanyun</au><au>Xu, Chenxi</au><au>Chen, Kechun</au><au>Wang, Wei</au><au>Yang, Liming</au><au>Hou, Zhaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual-template synthesis of interconnected 3D hollow N-doped carbon network for electrochemical application</atitle><jtitle>Carbon Letters</jtitle><stitle>Carbon Lett</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>33</volume><issue>2</issue><spage>409</spage><epage>418</epage><pages>409-418</pages><issn>1976-4251</issn><eissn>2233-4998</eissn><abstract>Recently, hollow carbon spheres (HCS) have aroused great interests in the field of energy storage and conversion owing to their unique morphology, structure and other charming properties. Nevertheless, unsatisfactory electrical conductivity and relatively poor volumetric energy density caused by inevitable gaps between discrete carbon spheres greatly impede the practical application of HCS. In this work, for the first time we propose a novel dual-template strategy and successfully fabricate interconnected 3D hollow N-doped carbon network (HNCN) by a facile and scalable pyrolysis process. By systematical characterization and analysis, it can be found that HNCN is assembled by HCS and lots of mesoporous carbon. Compared to the counterparts, the obtained HNCN exhibits unique 3D interconnected architecture, larger specific surface area, hierarchical meso/macropore structure, higher structure defects, higher N doping amount and more optimized N configurations (especially for pyridinic-N and graphitic-N). As a result, these advantageous features endow HNCN with remarkably promoted electrochemical performance for supercapacitor and oxygen reduction reaction. Clearly, our proposed dual-template strategy provides a good guidance on overcoming the intrinsic shortcomings of HCS, which undoubtedly broadens their application in energy storage and conversion.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42823-022-00429-4</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1976-4251 |
ispartof | Carbon Letters, 2023-03, Vol.33 (2), p.409-418 |
issn | 1976-4251 2233-4998 |
language | eng |
recordid | cdi_proquest_journals_2921199848 |
source | Springer Nature - Complete Springer Journals; ProQuest Central |
subjects | Carbon Characterization and Evaluation of Materials Chemical reduction Chemistry and Materials Science Electrical conductivity Electrical resistivity Electrochemical analysis Electrochemistry Electrodes Electrons Energy storage Etching Materials Engineering Materials Science Nanoparticles Nanotechnology Original Article Oxygen reduction reactions Pyrolysis Silica Spheres |
title | Dual-template synthesis of interconnected 3D hollow N-doped carbon network for electrochemical application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_korea&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual-template%20synthesis%20of%20interconnected%203D%20hollow%20N-doped%20carbon%20network%20for%20electrochemical%20application&rft.jtitle=Carbon%20Letters&rft.au=Chen,%20Liang&rft.date=2023-03-01&rft.volume=33&rft.issue=2&rft.spage=409&rft.epage=418&rft.pages=409-418&rft.issn=1976-4251&rft.eissn=2233-4998&rft_id=info:doi/10.1007/s42823-022-00429-4&rft_dat=%3Cproquest_korea%3E2921199848%3C/proquest_korea%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921199848&rft_id=info:pmid/&rfr_iscdi=true |