Keep It Simple: Evaluating Local Search-Based Latent Space Editing
Semantic image editing allows users to selectively change entire image attributes in a controlled manner with just a few clicks. Most approaches use a generative adversarial network (GAN) for this task to learn an appropriate latent space representation and attribute-specific transformations. Attrib...
Gespeichert in:
Veröffentlicht in: | SN computer science 2023-10, Vol.4 (6), p.820, Article 820 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 820 |
container_title | SN computer science |
container_volume | 4 |
creator | Meißner, Andreas Fröhlich, Andreas Geierhos, Michaela |
description | Semantic image editing allows users to selectively change entire image attributes in a controlled manner with just a few clicks. Most approaches use a generative adversarial network (GAN) for this task to learn an appropriate latent space representation and attribute-specific transformations. Attribute entanglement has been a limiting factor for previous approaches to attribute manipulation. However, more recent approaches have made significant improvements in this regard using separate networks for attribute extraction. Iterative optimization algorithms based on backpropagation can be used to find attribute vectors with minimal entanglement, but this requires large amounts of GPU memory, can lead to training instability, and requires differentiable models. To circumvent these issues, we present a local search-based approach to latent space editing that achieves comparable performance to existing algorithms while avoiding the aforementioned drawbacks. We also introduce a new evaluation metric that is easier to interpret than previous metrics. |
doi_str_mv | 10.1007/s42979-023-02272-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921081323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921081323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1594-7a0e5eade6b87f3740fa83c6190a469f34781cb5ceb86e1ecd3dd45cd8f49493</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsNT-AU8LnqOzH8nuerOlajHgob0v282kpqRJ3E0F_72pEfTkYZg5PO878BByzeCWAai7KLlRJgEuhuGKJ_KMTHiWsUQbUOd_7ksyi3EPADwFKbN0QuYviB1d9XRdHboa7-nyw9VH11fNjuatdzVdowv-LZm7iAXNXY_NAHfOI10W1Ym7IhelqyPOfvaUbB6Xm8Vzkr8-rRYPeeJZamSiHGCKrsBsq1UplITSaeEzZsDJzJRCKs38NvW41Rky9IUoCpn6QpfSSCOm5Gas7UL7fsTY2317DM3w0XLDGWgmuBgoPlI-tDEGLG0XqoMLn5aBPdmyoy072LLftqwcQmIMxQFudhh-q_9JfQEQHGsn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921081323</pqid></control><display><type>article</type><title>Keep It Simple: Evaluating Local Search-Based Latent Space Editing</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Meißner, Andreas ; Fröhlich, Andreas ; Geierhos, Michaela</creator><creatorcontrib>Meißner, Andreas ; Fröhlich, Andreas ; Geierhos, Michaela</creatorcontrib><description>Semantic image editing allows users to selectively change entire image attributes in a controlled manner with just a few clicks. Most approaches use a generative adversarial network (GAN) for this task to learn an appropriate latent space representation and attribute-specific transformations. Attribute entanglement has been a limiting factor for previous approaches to attribute manipulation. However, more recent approaches have made significant improvements in this regard using separate networks for attribute extraction. Iterative optimization algorithms based on backpropagation can be used to find attribute vectors with minimal entanglement, but this requires large amounts of GPU memory, can lead to training instability, and requires differentiable models. To circumvent these issues, we present a local search-based approach to latent space editing that achieves comparable performance to existing algorithms while avoiding the aforementioned drawbacks. We also introduce a new evaluation metric that is easier to interpret than previous metrics.</description><identifier>ISSN: 2661-8907</identifier><identifier>ISSN: 2662-995X</identifier><identifier>EISSN: 2661-8907</identifier><identifier>DOI: 10.1007/s42979-023-02272-4</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Advances on Computational Intelligence 2022 ; Algorithms ; Back propagation ; Computer Imaging ; Computer Science ; Computer Systems Organization and Communication Networks ; Data Structures and Information Theory ; Datasets ; Editing ; Entanglement ; Generative adversarial networks ; Information Systems and Communication Service ; Iterative methods ; Original Research ; Pattern Recognition and Graphics ; Semantics ; Software Engineering/Programming and Operating Systems ; Vision</subject><ispartof>SN computer science, 2023-10, Vol.4 (6), p.820, Article 820</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1594-7a0e5eade6b87f3740fa83c6190a469f34781cb5ceb86e1ecd3dd45cd8f49493</cites><orcidid>0000-0002-8180-5606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42979-023-02272-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2921081323?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72340</link.rule.ids></links><search><creatorcontrib>Meißner, Andreas</creatorcontrib><creatorcontrib>Fröhlich, Andreas</creatorcontrib><creatorcontrib>Geierhos, Michaela</creatorcontrib><title>Keep It Simple: Evaluating Local Search-Based Latent Space Editing</title><title>SN computer science</title><addtitle>SN COMPUT. SCI</addtitle><description>Semantic image editing allows users to selectively change entire image attributes in a controlled manner with just a few clicks. Most approaches use a generative adversarial network (GAN) for this task to learn an appropriate latent space representation and attribute-specific transformations. Attribute entanglement has been a limiting factor for previous approaches to attribute manipulation. However, more recent approaches have made significant improvements in this regard using separate networks for attribute extraction. Iterative optimization algorithms based on backpropagation can be used to find attribute vectors with minimal entanglement, but this requires large amounts of GPU memory, can lead to training instability, and requires differentiable models. To circumvent these issues, we present a local search-based approach to latent space editing that achieves comparable performance to existing algorithms while avoiding the aforementioned drawbacks. We also introduce a new evaluation metric that is easier to interpret than previous metrics.</description><subject>Advances on Computational Intelligence 2022</subject><subject>Algorithms</subject><subject>Back propagation</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Editing</subject><subject>Entanglement</subject><subject>Generative adversarial networks</subject><subject>Information Systems and Communication Service</subject><subject>Iterative methods</subject><subject>Original Research</subject><subject>Pattern Recognition and Graphics</subject><subject>Semantics</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Vision</subject><issn>2661-8907</issn><issn>2662-995X</issn><issn>2661-8907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1Lw0AQhhdRsNT-AU8LnqOzH8nuerOlajHgob0v282kpqRJ3E0F_72pEfTkYZg5PO878BByzeCWAai7KLlRJgEuhuGKJ_KMTHiWsUQbUOd_7ksyi3EPADwFKbN0QuYviB1d9XRdHboa7-nyw9VH11fNjuatdzVdowv-LZm7iAXNXY_NAHfOI10W1Ym7IhelqyPOfvaUbB6Xm8Vzkr8-rRYPeeJZamSiHGCKrsBsq1UplITSaeEzZsDJzJRCKs38NvW41Rky9IUoCpn6QpfSSCOm5Gas7UL7fsTY2317DM3w0XLDGWgmuBgoPlI-tDEGLG0XqoMLn5aBPdmyoy072LLftqwcQmIMxQFudhh-q_9JfQEQHGsn</recordid><startdate>20231021</startdate><enddate>20231021</enddate><creator>Meißner, Andreas</creator><creator>Fröhlich, Andreas</creator><creator>Geierhos, Michaela</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8180-5606</orcidid></search><sort><creationdate>20231021</creationdate><title>Keep It Simple: Evaluating Local Search-Based Latent Space Editing</title><author>Meißner, Andreas ; Fröhlich, Andreas ; Geierhos, Michaela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1594-7a0e5eade6b87f3740fa83c6190a469f34781cb5ceb86e1ecd3dd45cd8f49493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advances on Computational Intelligence 2022</topic><topic>Algorithms</topic><topic>Back propagation</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Editing</topic><topic>Entanglement</topic><topic>Generative adversarial networks</topic><topic>Information Systems and Communication Service</topic><topic>Iterative methods</topic><topic>Original Research</topic><topic>Pattern Recognition and Graphics</topic><topic>Semantics</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meißner, Andreas</creatorcontrib><creatorcontrib>Fröhlich, Andreas</creatorcontrib><creatorcontrib>Geierhos, Michaela</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>SN computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meißner, Andreas</au><au>Fröhlich, Andreas</au><au>Geierhos, Michaela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Keep It Simple: Evaluating Local Search-Based Latent Space Editing</atitle><jtitle>SN computer science</jtitle><stitle>SN COMPUT. SCI</stitle><date>2023-10-21</date><risdate>2023</risdate><volume>4</volume><issue>6</issue><spage>820</spage><pages>820-</pages><artnum>820</artnum><issn>2661-8907</issn><issn>2662-995X</issn><eissn>2661-8907</eissn><abstract>Semantic image editing allows users to selectively change entire image attributes in a controlled manner with just a few clicks. Most approaches use a generative adversarial network (GAN) for this task to learn an appropriate latent space representation and attribute-specific transformations. Attribute entanglement has been a limiting factor for previous approaches to attribute manipulation. However, more recent approaches have made significant improvements in this regard using separate networks for attribute extraction. Iterative optimization algorithms based on backpropagation can be used to find attribute vectors with minimal entanglement, but this requires large amounts of GPU memory, can lead to training instability, and requires differentiable models. To circumvent these issues, we present a local search-based approach to latent space editing that achieves comparable performance to existing algorithms while avoiding the aforementioned drawbacks. We also introduce a new evaluation metric that is easier to interpret than previous metrics.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42979-023-02272-4</doi><orcidid>https://orcid.org/0000-0002-8180-5606</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2661-8907 |
ispartof | SN computer science, 2023-10, Vol.4 (6), p.820, Article 820 |
issn | 2661-8907 2662-995X 2661-8907 |
language | eng |
recordid | cdi_proquest_journals_2921081323 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Advances on Computational Intelligence 2022 Algorithms Back propagation Computer Imaging Computer Science Computer Systems Organization and Communication Networks Data Structures and Information Theory Datasets Editing Entanglement Generative adversarial networks Information Systems and Communication Service Iterative methods Original Research Pattern Recognition and Graphics Semantics Software Engineering/Programming and Operating Systems Vision |
title | Keep It Simple: Evaluating Local Search-Based Latent Space Editing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Keep%20It%20Simple:%20Evaluating%20Local%20Search-Based%20Latent%20Space%20Editing&rft.jtitle=SN%20computer%20science&rft.au=Mei%C3%9Fner,%20Andreas&rft.date=2023-10-21&rft.volume=4&rft.issue=6&rft.spage=820&rft.pages=820-&rft.artnum=820&rft.issn=2661-8907&rft.eissn=2661-8907&rft_id=info:doi/10.1007/s42979-023-02272-4&rft_dat=%3Cproquest_cross%3E2921081323%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921081323&rft_id=info:pmid/&rfr_iscdi=true |