Investigation of slip systems activity and grain boundary sliding in fine-grained superplastic zinc alloy

Zn alloys are desirable candidates for biodegradable materials due to their great biocompatibility and sufficient mechanical properties. Nevertheless, the most popular strengthening method by grain refinement after cold processing is usually ineffective in Zn alloys. Besides highly anisotropic defor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of Civil and Mechanical Engineering 2023-10, Vol.23 (4), p.253, Article 253
Hauptverfasser: Bednarczyk, Wiktor, Kawałko, Jakub, Wątroba, Maria, Szuwarzyński, Michał, Bała, Piotr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 253
container_title Archives of Civil and Mechanical Engineering
container_volume 23
creator Bednarczyk, Wiktor
Kawałko, Jakub
Wątroba, Maria
Szuwarzyński, Michał
Bała, Piotr
description Zn alloys are desirable candidates for biodegradable materials due to their great biocompatibility and sufficient mechanical properties. Nevertheless, the most popular strengthening method by grain refinement after cold processing is usually ineffective in Zn alloys. Besides highly anisotropic deformation through a dislocation slip, grain boundary sliding (GBS) plays an important role in total deformation in fine-grained Zn alloys at room temperature (RT). Herein, Zn–0.5Cu (wt. %) alloy is fabricated by RT equal channel angular pressing, and its deformation mechanisms in tension were systematically analyzed at strain rates from 10 –4  s −1 to 10 0  s −1 . GBS contribution in total deformation was measured using surface markers and atomic force microscopy. In addition, dislocation slip activity was evaluated via electron-backscattered diffraction-based slip trace analysis. As a result, investigated alloy presents the GBS contribution in a total deformation at RT from 35% at the strain rate 10 0  s −1 to 70% at 10 –4  s −1 . Simultaneously, the number of slip-deformed grains decreased from 97.5% to 8%. Moreover, the basal slip system was dominant at all strain rates, while the prismatic and the pyramidal  slip systems were activated at the higher strain rates. The results presented here for the first time clearly show the complexity of deformation mechanisms in fine-grained Zn–0.5Cu, at significantly different strain rate conditions.
doi_str_mv 10.1007/s43452-023-00793-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2921060580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921060580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-7500693af91b364d49d08f48cacbf2f1fae72bc5ab3fcfe32736bcc2d203c78a3</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLgsu4f8BTwHH1J2rQ9yuLHwoIXPYc0TUqWblqT7kL99Wa3gp48va-ZecwgdEvhngIUDzHjWc4IME7SWHEiLtCCQckJ57S8_NNfo1WMOwCgUDAq8gVyG380cXStGl3vcW9x7NyA4xRHs49Y6dEd3Thh5RvcBuU8rvuDb1SYTsDG-RannXXekPPZNDgeBhOGTiVVjb-c11h1XT_doCurumhWP3WJPp6f3tevZPv2slk_bonmgo-kyAFExZWtaM1F1mRVA6XNSq10bZmlVpmC1TpXNbfaGs4KLmqtWcOA66JUfInuZt0h9J-H5E3u-kPw6aVkFaMgIC8hodiM0qGPMRgrh-D2yZakIE-pyjlVmVKV51SlSCQ-k2IC-9aEX-l_WN9L0nyW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921060580</pqid></control><display><type>article</type><title>Investigation of slip systems activity and grain boundary sliding in fine-grained superplastic zinc alloy</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Bednarczyk, Wiktor ; Kawałko, Jakub ; Wątroba, Maria ; Szuwarzyński, Michał ; Bała, Piotr</creator><creatorcontrib>Bednarczyk, Wiktor ; Kawałko, Jakub ; Wątroba, Maria ; Szuwarzyński, Michał ; Bała, Piotr</creatorcontrib><description>Zn alloys are desirable candidates for biodegradable materials due to their great biocompatibility and sufficient mechanical properties. Nevertheless, the most popular strengthening method by grain refinement after cold processing is usually ineffective in Zn alloys. Besides highly anisotropic deformation through a dislocation slip, grain boundary sliding (GBS) plays an important role in total deformation in fine-grained Zn alloys at room temperature (RT). Herein, Zn–0.5Cu (wt. %) alloy is fabricated by RT equal channel angular pressing, and its deformation mechanisms in tension were systematically analyzed at strain rates from 10 –4  s −1 to 10 0  s −1 . GBS contribution in total deformation was measured using surface markers and atomic force microscopy. In addition, dislocation slip activity was evaluated via electron-backscattered diffraction-based slip trace analysis. As a result, investigated alloy presents the GBS contribution in a total deformation at RT from 35% at the strain rate 10 0  s −1 to 70% at 10 –4  s −1 . Simultaneously, the number of slip-deformed grains decreased from 97.5% to 8%. Moreover, the basal slip system was dominant at all strain rates, while the prismatic and the pyramidal &lt;  c  +  a  &gt; slip systems were activated at the higher strain rates. The results presented here for the first time clearly show the complexity of deformation mechanisms in fine-grained Zn–0.5Cu, at significantly different strain rate conditions.</description><identifier>ISSN: 2083-3318</identifier><identifier>ISSN: 1644-9665</identifier><identifier>EISSN: 2083-3318</identifier><identifier>DOI: 10.1007/s43452-023-00793-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Alloys ; Biocompatibility ; Civil Engineering ; Deformation ; Deformation mechanisms ; Ductility ; Engineering ; Equal channel angular pressing ; Geometry ; Grain boundaries ; Grain boundary sliding ; Grain refinement ; Grain size ; Investigations ; Mechanical Engineering ; Mechanical properties ; Original Article ; Room temperature ; Slip ; Strain analysis ; Strain rate ; Structural Materials ; Superplasticity ; Zinc base alloys</subject><ispartof>Archives of Civil and Mechanical Engineering, 2023-10, Vol.23 (4), p.253, Article 253</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-7500693af91b364d49d08f48cacbf2f1fae72bc5ab3fcfe32736bcc2d203c78a3</citedby><cites>FETCH-LOGICAL-c363t-7500693af91b364d49d08f48cacbf2f1fae72bc5ab3fcfe32736bcc2d203c78a3</cites><orcidid>0000-0003-0001-1693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s43452-023-00793-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2921060580?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Bednarczyk, Wiktor</creatorcontrib><creatorcontrib>Kawałko, Jakub</creatorcontrib><creatorcontrib>Wątroba, Maria</creatorcontrib><creatorcontrib>Szuwarzyński, Michał</creatorcontrib><creatorcontrib>Bała, Piotr</creatorcontrib><title>Investigation of slip systems activity and grain boundary sliding in fine-grained superplastic zinc alloy</title><title>Archives of Civil and Mechanical Engineering</title><addtitle>Archiv.Civ.Mech.Eng</addtitle><description>Zn alloys are desirable candidates for biodegradable materials due to their great biocompatibility and sufficient mechanical properties. Nevertheless, the most popular strengthening method by grain refinement after cold processing is usually ineffective in Zn alloys. Besides highly anisotropic deformation through a dislocation slip, grain boundary sliding (GBS) plays an important role in total deformation in fine-grained Zn alloys at room temperature (RT). Herein, Zn–0.5Cu (wt. %) alloy is fabricated by RT equal channel angular pressing, and its deformation mechanisms in tension were systematically analyzed at strain rates from 10 –4  s −1 to 10 0  s −1 . GBS contribution in total deformation was measured using surface markers and atomic force microscopy. In addition, dislocation slip activity was evaluated via electron-backscattered diffraction-based slip trace analysis. As a result, investigated alloy presents the GBS contribution in a total deformation at RT from 35% at the strain rate 10 0  s −1 to 70% at 10 –4  s −1 . Simultaneously, the number of slip-deformed grains decreased from 97.5% to 8%. Moreover, the basal slip system was dominant at all strain rates, while the prismatic and the pyramidal &lt;  c  +  a  &gt; slip systems were activated at the higher strain rates. The results presented here for the first time clearly show the complexity of deformation mechanisms in fine-grained Zn–0.5Cu, at significantly different strain rate conditions.</description><subject>Alloys</subject><subject>Biocompatibility</subject><subject>Civil Engineering</subject><subject>Deformation</subject><subject>Deformation mechanisms</subject><subject>Ductility</subject><subject>Engineering</subject><subject>Equal channel angular pressing</subject><subject>Geometry</subject><subject>Grain boundaries</subject><subject>Grain boundary sliding</subject><subject>Grain refinement</subject><subject>Grain size</subject><subject>Investigations</subject><subject>Mechanical Engineering</subject><subject>Mechanical properties</subject><subject>Original Article</subject><subject>Room temperature</subject><subject>Slip</subject><subject>Strain analysis</subject><subject>Strain rate</subject><subject>Structural Materials</subject><subject>Superplasticity</subject><subject>Zinc base alloys</subject><issn>2083-3318</issn><issn>1644-9665</issn><issn>2083-3318</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9UE1LxDAUDKLgsu4f8BTwHH1J2rQ9yuLHwoIXPYc0TUqWblqT7kL99Wa3gp48va-ZecwgdEvhngIUDzHjWc4IME7SWHEiLtCCQckJ57S8_NNfo1WMOwCgUDAq8gVyG380cXStGl3vcW9x7NyA4xRHs49Y6dEd3Thh5RvcBuU8rvuDb1SYTsDG-RannXXekPPZNDgeBhOGTiVVjb-c11h1XT_doCurumhWP3WJPp6f3tevZPv2slk_bonmgo-kyAFExZWtaM1F1mRVA6XNSq10bZmlVpmC1TpXNbfaGs4KLmqtWcOA66JUfInuZt0h9J-H5E3u-kPw6aVkFaMgIC8hodiM0qGPMRgrh-D2yZakIE-pyjlVmVKV51SlSCQ-k2IC-9aEX-l_WN9L0nyW</recordid><startdate>20231023</startdate><enddate>20231023</enddate><creator>Bednarczyk, Wiktor</creator><creator>Kawałko, Jakub</creator><creator>Wątroba, Maria</creator><creator>Szuwarzyński, Michał</creator><creator>Bała, Piotr</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0001-1693</orcidid></search><sort><creationdate>20231023</creationdate><title>Investigation of slip systems activity and grain boundary sliding in fine-grained superplastic zinc alloy</title><author>Bednarczyk, Wiktor ; Kawałko, Jakub ; Wątroba, Maria ; Szuwarzyński, Michał ; Bała, Piotr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-7500693af91b364d49d08f48cacbf2f1fae72bc5ab3fcfe32736bcc2d203c78a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alloys</topic><topic>Biocompatibility</topic><topic>Civil Engineering</topic><topic>Deformation</topic><topic>Deformation mechanisms</topic><topic>Ductility</topic><topic>Engineering</topic><topic>Equal channel angular pressing</topic><topic>Geometry</topic><topic>Grain boundaries</topic><topic>Grain boundary sliding</topic><topic>Grain refinement</topic><topic>Grain size</topic><topic>Investigations</topic><topic>Mechanical Engineering</topic><topic>Mechanical properties</topic><topic>Original Article</topic><topic>Room temperature</topic><topic>Slip</topic><topic>Strain analysis</topic><topic>Strain rate</topic><topic>Structural Materials</topic><topic>Superplasticity</topic><topic>Zinc base alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bednarczyk, Wiktor</creatorcontrib><creatorcontrib>Kawałko, Jakub</creatorcontrib><creatorcontrib>Wątroba, Maria</creatorcontrib><creatorcontrib>Szuwarzyński, Michał</creatorcontrib><creatorcontrib>Bała, Piotr</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Archives of Civil and Mechanical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bednarczyk, Wiktor</au><au>Kawałko, Jakub</au><au>Wątroba, Maria</au><au>Szuwarzyński, Michał</au><au>Bała, Piotr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of slip systems activity and grain boundary sliding in fine-grained superplastic zinc alloy</atitle><jtitle>Archives of Civil and Mechanical Engineering</jtitle><stitle>Archiv.Civ.Mech.Eng</stitle><date>2023-10-23</date><risdate>2023</risdate><volume>23</volume><issue>4</issue><spage>253</spage><pages>253-</pages><artnum>253</artnum><issn>2083-3318</issn><issn>1644-9665</issn><eissn>2083-3318</eissn><abstract>Zn alloys are desirable candidates for biodegradable materials due to their great biocompatibility and sufficient mechanical properties. Nevertheless, the most popular strengthening method by grain refinement after cold processing is usually ineffective in Zn alloys. Besides highly anisotropic deformation through a dislocation slip, grain boundary sliding (GBS) plays an important role in total deformation in fine-grained Zn alloys at room temperature (RT). Herein, Zn–0.5Cu (wt. %) alloy is fabricated by RT equal channel angular pressing, and its deformation mechanisms in tension were systematically analyzed at strain rates from 10 –4  s −1 to 10 0  s −1 . GBS contribution in total deformation was measured using surface markers and atomic force microscopy. In addition, dislocation slip activity was evaluated via electron-backscattered diffraction-based slip trace analysis. As a result, investigated alloy presents the GBS contribution in a total deformation at RT from 35% at the strain rate 10 0  s −1 to 70% at 10 –4  s −1 . Simultaneously, the number of slip-deformed grains decreased from 97.5% to 8%. Moreover, the basal slip system was dominant at all strain rates, while the prismatic and the pyramidal &lt;  c  +  a  &gt; slip systems were activated at the higher strain rates. The results presented here for the first time clearly show the complexity of deformation mechanisms in fine-grained Zn–0.5Cu, at significantly different strain rate conditions.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s43452-023-00793-6</doi><orcidid>https://orcid.org/0000-0003-0001-1693</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2083-3318
ispartof Archives of Civil and Mechanical Engineering, 2023-10, Vol.23 (4), p.253, Article 253
issn 2083-3318
1644-9665
2083-3318
language eng
recordid cdi_proquest_journals_2921060580
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Alloys
Biocompatibility
Civil Engineering
Deformation
Deformation mechanisms
Ductility
Engineering
Equal channel angular pressing
Geometry
Grain boundaries
Grain boundary sliding
Grain refinement
Grain size
Investigations
Mechanical Engineering
Mechanical properties
Original Article
Room temperature
Slip
Strain analysis
Strain rate
Structural Materials
Superplasticity
Zinc base alloys
title Investigation of slip systems activity and grain boundary sliding in fine-grained superplastic zinc alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T20%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20slip%20systems%20activity%20and%20grain%20boundary%20sliding%20in%20fine-grained%20superplastic%20zinc%20alloy&rft.jtitle=Archives%20of%20Civil%20and%20Mechanical%20Engineering&rft.au=Bednarczyk,%20Wiktor&rft.date=2023-10-23&rft.volume=23&rft.issue=4&rft.spage=253&rft.pages=253-&rft.artnum=253&rft.issn=2083-3318&rft.eissn=2083-3318&rft_id=info:doi/10.1007/s43452-023-00793-6&rft_dat=%3Cproquest_cross%3E2921060580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921060580&rft_id=info:pmid/&rfr_iscdi=true