Bandgap engineering and enhancing photovoltaic effect in NBT–BNT–xNd lead-free ceramics
The influence of Nd dopant on the photoelectric properties of 0.94Na 0.5 Bi 0.5 TiO 3 –0.06BaNi 0.5 Ti 0.5 O 3 – x Nd ceramics were systematically investigated in this work. As the Nd 3+ increases, the grain size gradually decreases and the crystal structure transforms from orthorhombic to tetragona...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2024, Vol.59 (4), p.1486-1497 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1497 |
---|---|
container_issue | 4 |
container_start_page | 1486 |
container_title | Journal of materials science |
container_volume | 59 |
creator | Wang, Chuilei Huan, Yu Hou, Limin Liu, Yilong Wang, Xinjian Zhu, Ruping Wei, Tao |
description | The influence of Nd dopant on the photoelectric properties of 0.94Na
0.5
Bi
0.5
TiO
3
–0.06BaNi
0.5
Ti
0.5
O
3
–
x
Nd ceramics were systematically investigated in this work. As the Nd
3+
increases, the grain size gradually decreases and the crystal structure transforms from orthorhombic to tetragonal phase. Meanwhile, the dielectric constant and Curie temperature of ceramics gradually decrease, accompanied by the enhanced dielectric relaxation. The decreasing grain size and relatively strong ferroelectric properties facilitate the separation of photogenerated charge carriers. Optical absorption spectra indicate the enhanced absorption over a wider spectral range with a decrease optical band gap from 3.18 to 2.81 eV caused by Nd
3+
doping. The photocurrent density improves from 44 nA/cm
2
for the undoped sample to 105 nA/cm
2
for
x
= 0.05 sample under AM1.5 standard sunlight after 40 kV/cm high-electric-field polarizing. This result demonstrates that the Nd doped NBT–BNT ferroelectric ceramics have high potential for the application in next-generation solar cells.
Graphical abstract |
doi_str_mv | 10.1007/s10853-023-09311-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2920982177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A780933642</galeid><sourcerecordid>A780933642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-4f01e86579a8343d8955d4748dc5f9e4f3042ebe7e7a41b8471225fdb6cc85563</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxi0EEkvpC3CK1Et7SPHf2Dl2qxYqVYsE7YmD5XXGqausndrZqtx4B96QJ8EhSKgckDW2ZvT7RuP5EHpH8CnBWL7PBCvBakxLtIyQWr1AKyIkq7nC7CVaYUxpTXlDXqM3Od9jjIWkZIW-rk3oejNWEHofAJIPfVVKJb8zwc7ZeBen-BiHyXhbgXNgp8qHarO--fn9x3oz30-brhrAdLVLAJWFZHbe5rfolTNDhsM_7wG6vby4Of9YX3_6cHV-dl1bJpup5g4TUI2QrVGMs061QnRcctVZ4VrgjmFOYQsSpOFkq7gklArXbRtrlRANO0DHS98xxYc95EnvfLYwDCZA3GfNiGANlRzP6NE_6H3cp1Cm07SluFWUSFmo04XqzQDaBxenZGw5HZR_xQDOl_qZVGXXrOG0CE6eCQozwdPUm33O-urL5-csXVibYs4JnB6T35n0TROsZzP1YqYuZurfZmpVRGwR5XF2CNLfuf-j-gVnvKDj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920982177</pqid></control><display><type>article</type><title>Bandgap engineering and enhancing photovoltaic effect in NBT–BNT–xNd lead-free ceramics</title><source>Springer Nature - Complete Springer Journals</source><creator>Wang, Chuilei ; Huan, Yu ; Hou, Limin ; Liu, Yilong ; Wang, Xinjian ; Zhu, Ruping ; Wei, Tao</creator><creatorcontrib>Wang, Chuilei ; Huan, Yu ; Hou, Limin ; Liu, Yilong ; Wang, Xinjian ; Zhu, Ruping ; Wei, Tao</creatorcontrib><description>The influence of Nd dopant on the photoelectric properties of 0.94Na
0.5
Bi
0.5
TiO
3
–0.06BaNi
0.5
Ti
0.5
O
3
–
x
Nd ceramics were systematically investigated in this work. As the Nd
3+
increases, the grain size gradually decreases and the crystal structure transforms from orthorhombic to tetragonal phase. Meanwhile, the dielectric constant and Curie temperature of ceramics gradually decrease, accompanied by the enhanced dielectric relaxation. The decreasing grain size and relatively strong ferroelectric properties facilitate the separation of photogenerated charge carriers. Optical absorption spectra indicate the enhanced absorption over a wider spectral range with a decrease optical band gap from 3.18 to 2.81 eV caused by Nd
3+
doping. The photocurrent density improves from 44 nA/cm
2
for the undoped sample to 105 nA/cm
2
for
x
= 0.05 sample under AM1.5 standard sunlight after 40 kV/cm high-electric-field polarizing. This result demonstrates that the Nd doped NBT–BNT ferroelectric ceramics have high potential for the application in next-generation solar cells.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-023-09311-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>absorption ; Absorption spectra ; Alternative energy sources ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystal structure ; Crystallography and Scattering Methods ; Crystals ; Curie temperature ; Current carriers ; Dielectric properties ; Dielectric relaxation ; Dielectric strength ; Efficiency ; electric current ; Electric fields ; Electric properties ; Electronic Materials ; Energy gap ; Energy resources ; Engineering ; Ferroelectric materials ; Ferroelectricity ; Ferroelectrics ; Grain size ; Lead free ; Materials Science ; Optical properties ; Photoelectric effect ; Photoelectricity ; Photovoltaic cells ; Photovoltaic effect ; Polymer Sciences ; Reagents ; Scanning electron microscopy ; Solar cells ; Solar energy ; Solar energy industry ; solar radiation ; Solid Mechanics ; Structure ; temperature</subject><ispartof>Journal of materials science, 2024, Vol.59 (4), p.1486-1497</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2024 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c376t-4f01e86579a8343d8955d4748dc5f9e4f3042ebe7e7a41b8471225fdb6cc85563</cites><orcidid>0000-0002-6508-0801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-023-09311-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-023-09311-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Wang, Chuilei</creatorcontrib><creatorcontrib>Huan, Yu</creatorcontrib><creatorcontrib>Hou, Limin</creatorcontrib><creatorcontrib>Liu, Yilong</creatorcontrib><creatorcontrib>Wang, Xinjian</creatorcontrib><creatorcontrib>Zhu, Ruping</creatorcontrib><creatorcontrib>Wei, Tao</creatorcontrib><title>Bandgap engineering and enhancing photovoltaic effect in NBT–BNT–xNd lead-free ceramics</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The influence of Nd dopant on the photoelectric properties of 0.94Na
0.5
Bi
0.5
TiO
3
–0.06BaNi
0.5
Ti
0.5
O
3
–
x
Nd ceramics were systematically investigated in this work. As the Nd
3+
increases, the grain size gradually decreases and the crystal structure transforms from orthorhombic to tetragonal phase. Meanwhile, the dielectric constant and Curie temperature of ceramics gradually decrease, accompanied by the enhanced dielectric relaxation. The decreasing grain size and relatively strong ferroelectric properties facilitate the separation of photogenerated charge carriers. Optical absorption spectra indicate the enhanced absorption over a wider spectral range with a decrease optical band gap from 3.18 to 2.81 eV caused by Nd
3+
doping. The photocurrent density improves from 44 nA/cm
2
for the undoped sample to 105 nA/cm
2
for
x
= 0.05 sample under AM1.5 standard sunlight after 40 kV/cm high-electric-field polarizing. This result demonstrates that the Nd doped NBT–BNT ferroelectric ceramics have high potential for the application in next-generation solar cells.
Graphical abstract</description><subject>absorption</subject><subject>Absorption spectra</subject><subject>Alternative energy sources</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystal structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Crystals</subject><subject>Curie temperature</subject><subject>Current carriers</subject><subject>Dielectric properties</subject><subject>Dielectric relaxation</subject><subject>Dielectric strength</subject><subject>Efficiency</subject><subject>electric current</subject><subject>Electric fields</subject><subject>Electric properties</subject><subject>Electronic Materials</subject><subject>Energy gap</subject><subject>Energy resources</subject><subject>Engineering</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Ferroelectrics</subject><subject>Grain size</subject><subject>Lead free</subject><subject>Materials Science</subject><subject>Optical properties</subject><subject>Photoelectric effect</subject><subject>Photoelectricity</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic effect</subject><subject>Polymer Sciences</subject><subject>Reagents</subject><subject>Scanning electron microscopy</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Solar energy industry</subject><subject>solar radiation</subject><subject>Solid Mechanics</subject><subject>Structure</subject><subject>temperature</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kc9u1DAQxi0EEkvpC3CK1Et7SPHf2Dl2qxYqVYsE7YmD5XXGqausndrZqtx4B96QJ8EhSKgckDW2ZvT7RuP5EHpH8CnBWL7PBCvBakxLtIyQWr1AKyIkq7nC7CVaYUxpTXlDXqM3Od9jjIWkZIW-rk3oejNWEHofAJIPfVVKJb8zwc7ZeBen-BiHyXhbgXNgp8qHarO--fn9x3oz30-brhrAdLVLAJWFZHbe5rfolTNDhsM_7wG6vby4Of9YX3_6cHV-dl1bJpup5g4TUI2QrVGMs061QnRcctVZ4VrgjmFOYQsSpOFkq7gklArXbRtrlRANO0DHS98xxYc95EnvfLYwDCZA3GfNiGANlRzP6NE_6H3cp1Cm07SluFWUSFmo04XqzQDaBxenZGw5HZR_xQDOl_qZVGXXrOG0CE6eCQozwdPUm33O-urL5-csXVibYs4JnB6T35n0TROsZzP1YqYuZurfZmpVRGwR5XF2CNLfuf-j-gVnvKDj</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Wang, Chuilei</creator><creator>Huan, Yu</creator><creator>Hou, Limin</creator><creator>Liu, Yilong</creator><creator>Wang, Xinjian</creator><creator>Zhu, Ruping</creator><creator>Wei, Tao</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-6508-0801</orcidid></search><sort><creationdate>2024</creationdate><title>Bandgap engineering and enhancing photovoltaic effect in NBT–BNT–xNd lead-free ceramics</title><author>Wang, Chuilei ; Huan, Yu ; Hou, Limin ; Liu, Yilong ; Wang, Xinjian ; Zhu, Ruping ; Wei, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-4f01e86579a8343d8955d4748dc5f9e4f3042ebe7e7a41b8471225fdb6cc85563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>absorption</topic><topic>Absorption spectra</topic><topic>Alternative energy sources</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystal structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Crystals</topic><topic>Curie temperature</topic><topic>Current carriers</topic><topic>Dielectric properties</topic><topic>Dielectric relaxation</topic><topic>Dielectric strength</topic><topic>Efficiency</topic><topic>electric current</topic><topic>Electric fields</topic><topic>Electric properties</topic><topic>Electronic Materials</topic><topic>Energy gap</topic><topic>Energy resources</topic><topic>Engineering</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Ferroelectrics</topic><topic>Grain size</topic><topic>Lead free</topic><topic>Materials Science</topic><topic>Optical properties</topic><topic>Photoelectric effect</topic><topic>Photoelectricity</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic effect</topic><topic>Polymer Sciences</topic><topic>Reagents</topic><topic>Scanning electron microscopy</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Solar energy industry</topic><topic>solar radiation</topic><topic>Solid Mechanics</topic><topic>Structure</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chuilei</creatorcontrib><creatorcontrib>Huan, Yu</creatorcontrib><creatorcontrib>Hou, Limin</creatorcontrib><creatorcontrib>Liu, Yilong</creatorcontrib><creatorcontrib>Wang, Xinjian</creatorcontrib><creatorcontrib>Zhu, Ruping</creatorcontrib><creatorcontrib>Wei, Tao</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chuilei</au><au>Huan, Yu</au><au>Hou, Limin</au><au>Liu, Yilong</au><au>Wang, Xinjian</au><au>Zhu, Ruping</au><au>Wei, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bandgap engineering and enhancing photovoltaic effect in NBT–BNT–xNd lead-free ceramics</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2024</date><risdate>2024</risdate><volume>59</volume><issue>4</issue><spage>1486</spage><epage>1497</epage><pages>1486-1497</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The influence of Nd dopant on the photoelectric properties of 0.94Na
0.5
Bi
0.5
TiO
3
–0.06BaNi
0.5
Ti
0.5
O
3
–
x
Nd ceramics were systematically investigated in this work. As the Nd
3+
increases, the grain size gradually decreases and the crystal structure transforms from orthorhombic to tetragonal phase. Meanwhile, the dielectric constant and Curie temperature of ceramics gradually decrease, accompanied by the enhanced dielectric relaxation. The decreasing grain size and relatively strong ferroelectric properties facilitate the separation of photogenerated charge carriers. Optical absorption spectra indicate the enhanced absorption over a wider spectral range with a decrease optical band gap from 3.18 to 2.81 eV caused by Nd
3+
doping. The photocurrent density improves from 44 nA/cm
2
for the undoped sample to 105 nA/cm
2
for
x
= 0.05 sample under AM1.5 standard sunlight after 40 kV/cm high-electric-field polarizing. This result demonstrates that the Nd doped NBT–BNT ferroelectric ceramics have high potential for the application in next-generation solar cells.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-023-09311-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6508-0801</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2024, Vol.59 (4), p.1486-1497 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2920982177 |
source | Springer Nature - Complete Springer Journals |
subjects | absorption Absorption spectra Alternative energy sources Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Crystal structure Crystallography and Scattering Methods Crystals Curie temperature Current carriers Dielectric properties Dielectric relaxation Dielectric strength Efficiency electric current Electric fields Electric properties Electronic Materials Energy gap Energy resources Engineering Ferroelectric materials Ferroelectricity Ferroelectrics Grain size Lead free Materials Science Optical properties Photoelectric effect Photoelectricity Photovoltaic cells Photovoltaic effect Polymer Sciences Reagents Scanning electron microscopy Solar cells Solar energy Solar energy industry solar radiation Solid Mechanics Structure temperature |
title | Bandgap engineering and enhancing photovoltaic effect in NBT–BNT–xNd lead-free ceramics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bandgap%20engineering%20and%20enhancing%20photovoltaic%20effect%20in%20NBT%E2%80%93BNT%E2%80%93xNd%20lead-free%20ceramics&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wang,%20Chuilei&rft.date=2024&rft.volume=59&rft.issue=4&rft.spage=1486&rft.epage=1497&rft.pages=1486-1497&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-023-09311-8&rft_dat=%3Cgale_proqu%3EA780933642%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920982177&rft_id=info:pmid/&rft_galeid=A780933642&rfr_iscdi=true |