Population genetic structure of a timberline oak (Quercus semecarpifolia Sm.) of western Himalayas and conservation implications
Forests are considered as one of the most complex terrestrial ecosystems due to their high level of biodiversity, including genetic diversity. Understanding the genetic diversity of keystone species at a population level is vital to forest managers and policymakers for the conservation and sustainab...
Gespeichert in:
Veröffentlicht in: | Conservation genetics 2024-02, Vol.25 (1), p.133-147 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 147 |
---|---|
container_issue | 1 |
container_start_page | 133 |
container_title | Conservation genetics |
container_volume | 25 |
creator | Ginwal, Harish S. Rawat, Anita Shekhar, Chander Bhandari, Maneesh S. Kavidayal, Haripriya Shankhwar, Rajeev Yadav, Abhishek Kant, Rama Barthwal, Santan Meena, Rajendra K. |
description | Forests are considered as one of the most complex terrestrial ecosystems due to their high level of biodiversity, including genetic diversity. Understanding the genetic diversity of keystone species at a population level is vital to forest managers and policymakers for the conservation and sustainable utilization of forest genetic resources.
Quercus semecarpifolia
, commonly known as brown oak, is a keystone species of climax community thriving in the alpine zone of the Himalayas, which is presently experiencing population decline and range shift under the changing climate. In the present study, a landscape genetic approach was employed for deciphering the population genetic structure of
Q. semecarpifolia
in the western Himalayas using nuclear simple sequence repeat (SSR) markers. By analysing 718 individuals of 24 populations at 10 SSR loci, a high gene diversity (expected heterozygosity, He = 0.72; Allelic richness, Ar = 8.37) was recorded with a moderate genetic differentiation (F
ST
= 0.16; P |
doi_str_mv | 10.1007/s10592-023-01558-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920962096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920962096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a76b363fb5dba441f39773265e060f36d51e86835dc3bf35d08fa9463334c1583</originalsourceid><addsrcrecordid>eNp9UE1LxDAQLaLguvoHPAW86KFrPpqkPcqirrCgop5DmiZL1jatSavszZ9uuhW8eRjmDbz3ZuYlyTmCCwQhvw4I0gKnEJMUIkrzlB8kM0Q5TgtO-OGIGUshw-g4OQlhCyFimKNZ8v3UdkMte9s6sNFO91aB0PtB9YPXoDVAgt42pfa1dXGW7-DyedBeDQEE3WglfWdNW1sJXprF1Sj40qHX3oGVbWQtdzIA6SqgWhe0_5wW2aarrdrjcJocGVkHffbb58nb3e3rcpWuH-8fljfrVBFU9KnkrCSMmJJWpcwyZEjBOcGMasigIayiSOcsJ7RSpDSxwdzIImOEkEwhmpN5cjH5dr79GOKNYtsO3sWVAhcYFmysyMITS_k2BK-N6Hz8w-8EgmJMWkxJi5i02CcteBSRSRQi2W20_7P-R_UDSoGCqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920962096</pqid></control><display><type>article</type><title>Population genetic structure of a timberline oak (Quercus semecarpifolia Sm.) of western Himalayas and conservation implications</title><source>SpringerNature Journals</source><creator>Ginwal, Harish S. ; Rawat, Anita ; Shekhar, Chander ; Bhandari, Maneesh S. ; Kavidayal, Haripriya ; Shankhwar, Rajeev ; Yadav, Abhishek ; Kant, Rama ; Barthwal, Santan ; Meena, Rajendra K.</creator><creatorcontrib>Ginwal, Harish S. ; Rawat, Anita ; Shekhar, Chander ; Bhandari, Maneesh S. ; Kavidayal, Haripriya ; Shankhwar, Rajeev ; Yadav, Abhishek ; Kant, Rama ; Barthwal, Santan ; Meena, Rajendra K.</creatorcontrib><description>Forests are considered as one of the most complex terrestrial ecosystems due to their high level of biodiversity, including genetic diversity. Understanding the genetic diversity of keystone species at a population level is vital to forest managers and policymakers for the conservation and sustainable utilization of forest genetic resources.
Quercus semecarpifolia
, commonly known as brown oak, is a keystone species of climax community thriving in the alpine zone of the Himalayas, which is presently experiencing population decline and range shift under the changing climate. In the present study, a landscape genetic approach was employed for deciphering the population genetic structure of
Q. semecarpifolia
in the western Himalayas using nuclear simple sequence repeat (SSR) markers. By analysing 718 individuals of 24 populations at 10 SSR loci, a high gene diversity (expected heterozygosity, He = 0.72; Allelic richness, Ar = 8.37) was recorded with a moderate genetic differentiation (F
ST
= 0.16; P < 0.001). Genetic clustering and STRUCTURE analysis have displayed two major gene pools which appear to be primarily differentiated by the landscape and ecological constraints rather than the linear geographical distances. The hierarchical AMOVA analysis further supports the regional genetic divergence with a substantial proportion of genetic variation detected among the regions. Diversity maps generated by spatial interpolation elucidated the distribution pattern of genetic diversity and structure across the range, and aid in the demarcation of the diversity hotspots for conservation implications. To the best of our knowledge, this is the first comprehensive genetic study carried out in any Himalayan oaks, and the information generated herein is novel and of paramount importance in guiding conservation decisions.</description><identifier>ISSN: 1566-0621</identifier><identifier>EISSN: 1572-9737</identifier><identifier>DOI: 10.1007/s10592-023-01558-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Alpine environments ; Animal Genetics and Genomics ; Biodiversity ; Biomedical and Life Sciences ; Climate change ; Climax communities ; Clustering ; Conservation ; Conservation Biology/Ecology ; Distribution patterns ; Divergence ; Ecology ; Evolutionary Biology ; Forest management ; Forest resources ; Gene mapping ; Genetic analysis ; Genetic diversity ; Genetic resources ; Genetic structure ; Heterozygosity ; Interpolation ; Keystone species ; Landscape ; Life Sciences ; Oak ; Plant Genetics and Genomics ; Population decline ; Population genetics ; Quercus semecarpifolia ; Research Article ; Species diversity ; Structural analysis ; Terrestrial ecosystems ; Timberline</subject><ispartof>Conservation genetics, 2024-02, Vol.25 (1), p.133-147</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a76b363fb5dba441f39773265e060f36d51e86835dc3bf35d08fa9463334c1583</citedby><cites>FETCH-LOGICAL-c319t-a76b363fb5dba441f39773265e060f36d51e86835dc3bf35d08fa9463334c1583</cites><orcidid>0000-0002-7069-7048 ; 0000-0001-8545-7349 ; 0000-0002-1751-1195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10592-023-01558-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10592-023-01558-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Ginwal, Harish S.</creatorcontrib><creatorcontrib>Rawat, Anita</creatorcontrib><creatorcontrib>Shekhar, Chander</creatorcontrib><creatorcontrib>Bhandari, Maneesh S.</creatorcontrib><creatorcontrib>Kavidayal, Haripriya</creatorcontrib><creatorcontrib>Shankhwar, Rajeev</creatorcontrib><creatorcontrib>Yadav, Abhishek</creatorcontrib><creatorcontrib>Kant, Rama</creatorcontrib><creatorcontrib>Barthwal, Santan</creatorcontrib><creatorcontrib>Meena, Rajendra K.</creatorcontrib><title>Population genetic structure of a timberline oak (Quercus semecarpifolia Sm.) of western Himalayas and conservation implications</title><title>Conservation genetics</title><addtitle>Conserv Genet</addtitle><description>Forests are considered as one of the most complex terrestrial ecosystems due to their high level of biodiversity, including genetic diversity. Understanding the genetic diversity of keystone species at a population level is vital to forest managers and policymakers for the conservation and sustainable utilization of forest genetic resources.
Quercus semecarpifolia
, commonly known as brown oak, is a keystone species of climax community thriving in the alpine zone of the Himalayas, which is presently experiencing population decline and range shift under the changing climate. In the present study, a landscape genetic approach was employed for deciphering the population genetic structure of
Q. semecarpifolia
in the western Himalayas using nuclear simple sequence repeat (SSR) markers. By analysing 718 individuals of 24 populations at 10 SSR loci, a high gene diversity (expected heterozygosity, He = 0.72; Allelic richness, Ar = 8.37) was recorded with a moderate genetic differentiation (F
ST
= 0.16; P < 0.001). Genetic clustering and STRUCTURE analysis have displayed two major gene pools which appear to be primarily differentiated by the landscape and ecological constraints rather than the linear geographical distances. The hierarchical AMOVA analysis further supports the regional genetic divergence with a substantial proportion of genetic variation detected among the regions. Diversity maps generated by spatial interpolation elucidated the distribution pattern of genetic diversity and structure across the range, and aid in the demarcation of the diversity hotspots for conservation implications. To the best of our knowledge, this is the first comprehensive genetic study carried out in any Himalayan oaks, and the information generated herein is novel and of paramount importance in guiding conservation decisions.</description><subject>Alpine environments</subject><subject>Animal Genetics and Genomics</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Climate change</subject><subject>Climax communities</subject><subject>Clustering</subject><subject>Conservation</subject><subject>Conservation Biology/Ecology</subject><subject>Distribution patterns</subject><subject>Divergence</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Forest management</subject><subject>Forest resources</subject><subject>Gene mapping</subject><subject>Genetic analysis</subject><subject>Genetic diversity</subject><subject>Genetic resources</subject><subject>Genetic structure</subject><subject>Heterozygosity</subject><subject>Interpolation</subject><subject>Keystone species</subject><subject>Landscape</subject><subject>Life Sciences</subject><subject>Oak</subject><subject>Plant Genetics and Genomics</subject><subject>Population decline</subject><subject>Population genetics</subject><subject>Quercus semecarpifolia</subject><subject>Research Article</subject><subject>Species diversity</subject><subject>Structural analysis</subject><subject>Terrestrial ecosystems</subject><subject>Timberline</subject><issn>1566-0621</issn><issn>1572-9737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQLaLguvoHPAW86KFrPpqkPcqirrCgop5DmiZL1jatSavszZ9uuhW8eRjmDbz3ZuYlyTmCCwQhvw4I0gKnEJMUIkrzlB8kM0Q5TgtO-OGIGUshw-g4OQlhCyFimKNZ8v3UdkMte9s6sNFO91aB0PtB9YPXoDVAgt42pfa1dXGW7-DyedBeDQEE3WglfWdNW1sJXprF1Sj40qHX3oGVbWQtdzIA6SqgWhe0_5wW2aarrdrjcJocGVkHffbb58nb3e3rcpWuH-8fljfrVBFU9KnkrCSMmJJWpcwyZEjBOcGMasigIayiSOcsJ7RSpDSxwdzIImOEkEwhmpN5cjH5dr79GOKNYtsO3sWVAhcYFmysyMITS_k2BK-N6Hz8w-8EgmJMWkxJi5i02CcteBSRSRQi2W20_7P-R_UDSoGCqQ</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Ginwal, Harish S.</creator><creator>Rawat, Anita</creator><creator>Shekhar, Chander</creator><creator>Bhandari, Maneesh S.</creator><creator>Kavidayal, Haripriya</creator><creator>Shankhwar, Rajeev</creator><creator>Yadav, Abhishek</creator><creator>Kant, Rama</creator><creator>Barthwal, Santan</creator><creator>Meena, Rajendra K.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0002-7069-7048</orcidid><orcidid>https://orcid.org/0000-0001-8545-7349</orcidid><orcidid>https://orcid.org/0000-0002-1751-1195</orcidid></search><sort><creationdate>20240201</creationdate><title>Population genetic structure of a timberline oak (Quercus semecarpifolia Sm.) of western Himalayas and conservation implications</title><author>Ginwal, Harish S. ; Rawat, Anita ; Shekhar, Chander ; Bhandari, Maneesh S. ; Kavidayal, Haripriya ; Shankhwar, Rajeev ; Yadav, Abhishek ; Kant, Rama ; Barthwal, Santan ; Meena, Rajendra K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a76b363fb5dba441f39773265e060f36d51e86835dc3bf35d08fa9463334c1583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alpine environments</topic><topic>Animal Genetics and Genomics</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Climate change</topic><topic>Climax communities</topic><topic>Clustering</topic><topic>Conservation</topic><topic>Conservation Biology/Ecology</topic><topic>Distribution patterns</topic><topic>Divergence</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Forest management</topic><topic>Forest resources</topic><topic>Gene mapping</topic><topic>Genetic analysis</topic><topic>Genetic diversity</topic><topic>Genetic resources</topic><topic>Genetic structure</topic><topic>Heterozygosity</topic><topic>Interpolation</topic><topic>Keystone species</topic><topic>Landscape</topic><topic>Life Sciences</topic><topic>Oak</topic><topic>Plant Genetics and Genomics</topic><topic>Population decline</topic><topic>Population genetics</topic><topic>Quercus semecarpifolia</topic><topic>Research Article</topic><topic>Species diversity</topic><topic>Structural analysis</topic><topic>Terrestrial ecosystems</topic><topic>Timberline</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ginwal, Harish S.</creatorcontrib><creatorcontrib>Rawat, Anita</creatorcontrib><creatorcontrib>Shekhar, Chander</creatorcontrib><creatorcontrib>Bhandari, Maneesh S.</creatorcontrib><creatorcontrib>Kavidayal, Haripriya</creatorcontrib><creatorcontrib>Shankhwar, Rajeev</creatorcontrib><creatorcontrib>Yadav, Abhishek</creatorcontrib><creatorcontrib>Kant, Rama</creatorcontrib><creatorcontrib>Barthwal, Santan</creatorcontrib><creatorcontrib>Meena, Rajendra K.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Conservation genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ginwal, Harish S.</au><au>Rawat, Anita</au><au>Shekhar, Chander</au><au>Bhandari, Maneesh S.</au><au>Kavidayal, Haripriya</au><au>Shankhwar, Rajeev</au><au>Yadav, Abhishek</au><au>Kant, Rama</au><au>Barthwal, Santan</au><au>Meena, Rajendra K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population genetic structure of a timberline oak (Quercus semecarpifolia Sm.) of western Himalayas and conservation implications</atitle><jtitle>Conservation genetics</jtitle><stitle>Conserv Genet</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>133</spage><epage>147</epage><pages>133-147</pages><issn>1566-0621</issn><eissn>1572-9737</eissn><abstract>Forests are considered as one of the most complex terrestrial ecosystems due to their high level of biodiversity, including genetic diversity. Understanding the genetic diversity of keystone species at a population level is vital to forest managers and policymakers for the conservation and sustainable utilization of forest genetic resources.
Quercus semecarpifolia
, commonly known as brown oak, is a keystone species of climax community thriving in the alpine zone of the Himalayas, which is presently experiencing population decline and range shift under the changing climate. In the present study, a landscape genetic approach was employed for deciphering the population genetic structure of
Q. semecarpifolia
in the western Himalayas using nuclear simple sequence repeat (SSR) markers. By analysing 718 individuals of 24 populations at 10 SSR loci, a high gene diversity (expected heterozygosity, He = 0.72; Allelic richness, Ar = 8.37) was recorded with a moderate genetic differentiation (F
ST
= 0.16; P < 0.001). Genetic clustering and STRUCTURE analysis have displayed two major gene pools which appear to be primarily differentiated by the landscape and ecological constraints rather than the linear geographical distances. The hierarchical AMOVA analysis further supports the regional genetic divergence with a substantial proportion of genetic variation detected among the regions. Diversity maps generated by spatial interpolation elucidated the distribution pattern of genetic diversity and structure across the range, and aid in the demarcation of the diversity hotspots for conservation implications. To the best of our knowledge, this is the first comprehensive genetic study carried out in any Himalayan oaks, and the information generated herein is novel and of paramount importance in guiding conservation decisions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10592-023-01558-7</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7069-7048</orcidid><orcidid>https://orcid.org/0000-0001-8545-7349</orcidid><orcidid>https://orcid.org/0000-0002-1751-1195</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1566-0621 |
ispartof | Conservation genetics, 2024-02, Vol.25 (1), p.133-147 |
issn | 1566-0621 1572-9737 |
language | eng |
recordid | cdi_proquest_journals_2920962096 |
source | SpringerNature Journals |
subjects | Alpine environments Animal Genetics and Genomics Biodiversity Biomedical and Life Sciences Climate change Climax communities Clustering Conservation Conservation Biology/Ecology Distribution patterns Divergence Ecology Evolutionary Biology Forest management Forest resources Gene mapping Genetic analysis Genetic diversity Genetic resources Genetic structure Heterozygosity Interpolation Keystone species Landscape Life Sciences Oak Plant Genetics and Genomics Population decline Population genetics Quercus semecarpifolia Research Article Species diversity Structural analysis Terrestrial ecosystems Timberline |
title | Population genetic structure of a timberline oak (Quercus semecarpifolia Sm.) of western Himalayas and conservation implications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T23%3A57%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20genetic%20structure%20of%20a%20timberline%20oak%20(Quercus%20semecarpifolia%20Sm.)%20of%20western%20Himalayas%20and%20conservation%20implications&rft.jtitle=Conservation%20genetics&rft.au=Ginwal,%20Harish%20S.&rft.date=2024-02-01&rft.volume=25&rft.issue=1&rft.spage=133&rft.epage=147&rft.pages=133-147&rft.issn=1566-0621&rft.eissn=1572-9737&rft_id=info:doi/10.1007/s10592-023-01558-7&rft_dat=%3Cproquest_cross%3E2920962096%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920962096&rft_id=info:pmid/&rfr_iscdi=true |