Pollen dispersal and mating patterns determine resilience for a large-yet-fragmented population of Cariniana estrellensis

Forest fragmentation studies are now urgent due to increased rates of deforestation and forest fires worldwide. In South America, the bee-pollinated Cariniana estrellensis is one of the largest trees, and a paradigm for the health and sustainability of forest biomes. For a large-yet-fragmented popul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conservation genetics 2024-02, Vol.25 (1), p.117-132
Hauptverfasser: Kubota, Thaisa Y. K., Hallsworth, John E., da Silva, Alexandre M., Moraes, Mario L. T., Cambuim, Jose, Corseuil, Cláudia W., Sebbenn, Alexandre M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 132
container_issue 1
container_start_page 117
container_title Conservation genetics
container_volume 25
creator Kubota, Thaisa Y. K.
Hallsworth, John E.
da Silva, Alexandre M.
Moraes, Mario L. T.
Cambuim, Jose
Corseuil, Cláudia W.
Sebbenn, Alexandre M.
description Forest fragmentation studies are now urgent due to increased rates of deforestation and forest fires worldwide. In South America, the bee-pollinated Cariniana estrellensis is one of the largest trees, and a paradigm for the health and sustainability of forest biomes. For a large-yet-fragmented population (four subpopulations) in the transition zone between Brazilian Savannah and Atlantic Forest, we carried out a study of pollen flow, mating system and spatial genetic structure using nine microsatellite loci. This revealed that the subpopulations are not reproductively isolated because of pollen flow from outside the study area (18.3%) and between subpopulations (16.1–31.3%). Pollen dispersal reached long distances (3.5 km), but mating occurred predominantly between larger-diameter trees located close to mother-trees. We found that C. estrellensis is self-compatible with reproduction mediated mainly by outcrossing (> 0.95), but matings were not random due to biparental inbreeding (tr: 0.048–0.124) and correlated-paternity (rp: 0.16–0.28), which was higher within (rpw: 0.524–0.95) than among fruits (rpa: 0.048–0.052). Inbreeding decreased from seedlings (0.088) to adults, indicating inbreeding depression between the seedling and adult stages. Subpopulations exhibited spatial genetic structure (50–200 m), revealing a pattern of genetic dispersion of isolation-by-distance. Seeds should be harvested from trees that are > 200 m apart for successful ex-situ conservation and populations should not be isolated by more than the maximum pollen-dispersion distance observed (3.5 km) for in-situ conservation. The findings are consistent with the maximum distance that bees can disperse pollen and thereby maintain genetic connectivity between populations and resilience to population fragmentation into forest remnants.
doi_str_mv 10.1007/s10592-023-01557-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920962085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920962085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a41173e98a1b6fa5559867564b0397a77f84929e2adffc11e815df6e9b934dc63</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoqKMv4CrgOpqkTdIsZfAGA7rQdTjTnpQMbVqTzmLe3o4V3Ln6z-K_HD5CbgS_E5yb-yy4spJxWTAulDKsOiEXQhnJrCnM6fHWmnEtxTm5zHnHudDSiAtyeB-6DiNtQh4xZegoxIb2MIXY0hGmCVPMtMFZ-xCRJsyhCxhrpH5IFGgHqUV2wIn5BG2PccKGjsO47-aOIdLB0zWkEANEoJinhMe9HPIVOfPQZbz-1RX5fHr8WL-wzdvz6_phw-pC2IlBKYQp0FYgttqDUspW2ihdbnlhDRjjq9JKixIa72shsBKq8Rrt1hZlU-tiRW6X3jENX_v5A7cb9inOk05aya2WvFKzSy6uOg05J_RuTKGHdHCCuyNityB2M2L3g9hVc6hYQnk2xxbTX_U_qW_mkYD_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920962085</pqid></control><display><type>article</type><title>Pollen dispersal and mating patterns determine resilience for a large-yet-fragmented population of Cariniana estrellensis</title><source>SpringerNature Journals</source><creator>Kubota, Thaisa Y. K. ; Hallsworth, John E. ; da Silva, Alexandre M. ; Moraes, Mario L. T. ; Cambuim, Jose ; Corseuil, Cláudia W. ; Sebbenn, Alexandre M.</creator><creatorcontrib>Kubota, Thaisa Y. K. ; Hallsworth, John E. ; da Silva, Alexandre M. ; Moraes, Mario L. T. ; Cambuim, Jose ; Corseuil, Cláudia W. ; Sebbenn, Alexandre M.</creatorcontrib><description>Forest fragmentation studies are now urgent due to increased rates of deforestation and forest fires worldwide. In South America, the bee-pollinated Cariniana estrellensis is one of the largest trees, and a paradigm for the health and sustainability of forest biomes. For a large-yet-fragmented population (four subpopulations) in the transition zone between Brazilian Savannah and Atlantic Forest, we carried out a study of pollen flow, mating system and spatial genetic structure using nine microsatellite loci. This revealed that the subpopulations are not reproductively isolated because of pollen flow from outside the study area (18.3%) and between subpopulations (16.1–31.3%). Pollen dispersal reached long distances (3.5 km), but mating occurred predominantly between larger-diameter trees located close to mother-trees. We found that C. estrellensis is self-compatible with reproduction mediated mainly by outcrossing (&gt; 0.95), but matings were not random due to biparental inbreeding (tr: 0.048–0.124) and correlated-paternity (rp: 0.16–0.28), which was higher within (rpw: 0.524–0.95) than among fruits (rpa: 0.048–0.052). Inbreeding decreased from seedlings (0.088) to adults, indicating inbreeding depression between the seedling and adult stages. Subpopulations exhibited spatial genetic structure (50–200 m), revealing a pattern of genetic dispersion of isolation-by-distance. Seeds should be harvested from trees that are &gt; 200 m apart for successful ex-situ conservation and populations should not be isolated by more than the maximum pollen-dispersion distance observed (3.5 km) for in-situ conservation. The findings are consistent with the maximum distance that bees can disperse pollen and thereby maintain genetic connectivity between populations and resilience to population fragmentation into forest remnants.</description><identifier>ISSN: 1566-0621</identifier><identifier>EISSN: 1572-9737</identifier><identifier>DOI: 10.1007/s10592-023-01557-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Animal Genetics and Genomics ; Animal reproduction ; Bees ; Biodiversity ; Biomedical and Life Sciences ; Conservation ; Conservation Biology/Ecology ; Deforestation ; Dispersion ; Ecology ; Evolutionary Biology ; Forest fires ; Forests ; Fragmentation ; Genetic diversity ; Genetic structure ; Habitat fragmentation ; Inbreeding ; Inbreeding depression ; Life Sciences ; Mating ; Microsatellites ; Paternity ; Plant Genetics and Genomics ; Plant reproduction ; Pollen ; Population ; Population genetics ; Populations ; Reproductive isolation ; Research Article ; Resilience ; Seedlings ; Seeds ; Subpopulations ; Transition zone ; Trees</subject><ispartof>Conservation genetics, 2024-02, Vol.25 (1), p.117-132</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a41173e98a1b6fa5559867564b0397a77f84929e2adffc11e815df6e9b934dc63</citedby><cites>FETCH-LOGICAL-c319t-a41173e98a1b6fa5559867564b0397a77f84929e2adffc11e815df6e9b934dc63</cites><orcidid>0000-0001-6797-9362 ; 0000-0001-6939-8430 ; 0000-0002-1076-9812 ; 0000-0003-1458-2454 ; 0000-0001-5928-4181 ; 0000-0003-0839-633X ; 0000-0003-2352-0941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10592-023-01557-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10592-023-01557-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Kubota, Thaisa Y. K.</creatorcontrib><creatorcontrib>Hallsworth, John E.</creatorcontrib><creatorcontrib>da Silva, Alexandre M.</creatorcontrib><creatorcontrib>Moraes, Mario L. T.</creatorcontrib><creatorcontrib>Cambuim, Jose</creatorcontrib><creatorcontrib>Corseuil, Cláudia W.</creatorcontrib><creatorcontrib>Sebbenn, Alexandre M.</creatorcontrib><title>Pollen dispersal and mating patterns determine resilience for a large-yet-fragmented population of Cariniana estrellensis</title><title>Conservation genetics</title><addtitle>Conserv Genet</addtitle><description>Forest fragmentation studies are now urgent due to increased rates of deforestation and forest fires worldwide. In South America, the bee-pollinated Cariniana estrellensis is one of the largest trees, and a paradigm for the health and sustainability of forest biomes. For a large-yet-fragmented population (four subpopulations) in the transition zone between Brazilian Savannah and Atlantic Forest, we carried out a study of pollen flow, mating system and spatial genetic structure using nine microsatellite loci. This revealed that the subpopulations are not reproductively isolated because of pollen flow from outside the study area (18.3%) and between subpopulations (16.1–31.3%). Pollen dispersal reached long distances (3.5 km), but mating occurred predominantly between larger-diameter trees located close to mother-trees. We found that C. estrellensis is self-compatible with reproduction mediated mainly by outcrossing (&gt; 0.95), but matings were not random due to biparental inbreeding (tr: 0.048–0.124) and correlated-paternity (rp: 0.16–0.28), which was higher within (rpw: 0.524–0.95) than among fruits (rpa: 0.048–0.052). Inbreeding decreased from seedlings (0.088) to adults, indicating inbreeding depression between the seedling and adult stages. Subpopulations exhibited spatial genetic structure (50–200 m), revealing a pattern of genetic dispersion of isolation-by-distance. Seeds should be harvested from trees that are &gt; 200 m apart for successful ex-situ conservation and populations should not be isolated by more than the maximum pollen-dispersion distance observed (3.5 km) for in-situ conservation. The findings are consistent with the maximum distance that bees can disperse pollen and thereby maintain genetic connectivity between populations and resilience to population fragmentation into forest remnants.</description><subject>Animal Genetics and Genomics</subject><subject>Animal reproduction</subject><subject>Bees</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Conservation</subject><subject>Conservation Biology/Ecology</subject><subject>Deforestation</subject><subject>Dispersion</subject><subject>Ecology</subject><subject>Evolutionary Biology</subject><subject>Forest fires</subject><subject>Forests</subject><subject>Fragmentation</subject><subject>Genetic diversity</subject><subject>Genetic structure</subject><subject>Habitat fragmentation</subject><subject>Inbreeding</subject><subject>Inbreeding depression</subject><subject>Life Sciences</subject><subject>Mating</subject><subject>Microsatellites</subject><subject>Paternity</subject><subject>Plant Genetics and Genomics</subject><subject>Plant reproduction</subject><subject>Pollen</subject><subject>Population</subject><subject>Population genetics</subject><subject>Populations</subject><subject>Reproductive isolation</subject><subject>Research Article</subject><subject>Resilience</subject><subject>Seedlings</subject><subject>Seeds</subject><subject>Subpopulations</subject><subject>Transition zone</subject><subject>Trees</subject><issn>1566-0621</issn><issn>1572-9737</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAUhoMoqKMv4CrgOpqkTdIsZfAGA7rQdTjTnpQMbVqTzmLe3o4V3Ln6z-K_HD5CbgS_E5yb-yy4spJxWTAulDKsOiEXQhnJrCnM6fHWmnEtxTm5zHnHudDSiAtyeB-6DiNtQh4xZegoxIb2MIXY0hGmCVPMtMFZ-xCRJsyhCxhrpH5IFGgHqUV2wIn5BG2PccKGjsO47-aOIdLB0zWkEANEoJinhMe9HPIVOfPQZbz-1RX5fHr8WL-wzdvz6_phw-pC2IlBKYQp0FYgttqDUspW2ihdbnlhDRjjq9JKixIa72shsBKq8Rrt1hZlU-tiRW6X3jENX_v5A7cb9inOk05aya2WvFKzSy6uOg05J_RuTKGHdHCCuyNityB2M2L3g9hVc6hYQnk2xxbTX_U_qW_mkYD_</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Kubota, Thaisa Y. K.</creator><creator>Hallsworth, John E.</creator><creator>da Silva, Alexandre M.</creator><creator>Moraes, Mario L. T.</creator><creator>Cambuim, Jose</creator><creator>Corseuil, Cláudia W.</creator><creator>Sebbenn, Alexandre M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><orcidid>https://orcid.org/0000-0001-6797-9362</orcidid><orcidid>https://orcid.org/0000-0001-6939-8430</orcidid><orcidid>https://orcid.org/0000-0002-1076-9812</orcidid><orcidid>https://orcid.org/0000-0003-1458-2454</orcidid><orcidid>https://orcid.org/0000-0001-5928-4181</orcidid><orcidid>https://orcid.org/0000-0003-0839-633X</orcidid><orcidid>https://orcid.org/0000-0003-2352-0941</orcidid></search><sort><creationdate>20240201</creationdate><title>Pollen dispersal and mating patterns determine resilience for a large-yet-fragmented population of Cariniana estrellensis</title><author>Kubota, Thaisa Y. K. ; Hallsworth, John E. ; da Silva, Alexandre M. ; Moraes, Mario L. T. ; Cambuim, Jose ; Corseuil, Cláudia W. ; Sebbenn, Alexandre M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a41173e98a1b6fa5559867564b0397a77f84929e2adffc11e815df6e9b934dc63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animal reproduction</topic><topic>Bees</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Conservation</topic><topic>Conservation Biology/Ecology</topic><topic>Deforestation</topic><topic>Dispersion</topic><topic>Ecology</topic><topic>Evolutionary Biology</topic><topic>Forest fires</topic><topic>Forests</topic><topic>Fragmentation</topic><topic>Genetic diversity</topic><topic>Genetic structure</topic><topic>Habitat fragmentation</topic><topic>Inbreeding</topic><topic>Inbreeding depression</topic><topic>Life Sciences</topic><topic>Mating</topic><topic>Microsatellites</topic><topic>Paternity</topic><topic>Plant Genetics and Genomics</topic><topic>Plant reproduction</topic><topic>Pollen</topic><topic>Population</topic><topic>Population genetics</topic><topic>Populations</topic><topic>Reproductive isolation</topic><topic>Research Article</topic><topic>Resilience</topic><topic>Seedlings</topic><topic>Seeds</topic><topic>Subpopulations</topic><topic>Transition zone</topic><topic>Trees</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kubota, Thaisa Y. K.</creatorcontrib><creatorcontrib>Hallsworth, John E.</creatorcontrib><creatorcontrib>da Silva, Alexandre M.</creatorcontrib><creatorcontrib>Moraes, Mario L. T.</creatorcontrib><creatorcontrib>Cambuim, Jose</creatorcontrib><creatorcontrib>Corseuil, Cláudia W.</creatorcontrib><creatorcontrib>Sebbenn, Alexandre M.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Conservation genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kubota, Thaisa Y. K.</au><au>Hallsworth, John E.</au><au>da Silva, Alexandre M.</au><au>Moraes, Mario L. T.</au><au>Cambuim, Jose</au><au>Corseuil, Cláudia W.</au><au>Sebbenn, Alexandre M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pollen dispersal and mating patterns determine resilience for a large-yet-fragmented population of Cariniana estrellensis</atitle><jtitle>Conservation genetics</jtitle><stitle>Conserv Genet</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>117</spage><epage>132</epage><pages>117-132</pages><issn>1566-0621</issn><eissn>1572-9737</eissn><abstract>Forest fragmentation studies are now urgent due to increased rates of deforestation and forest fires worldwide. In South America, the bee-pollinated Cariniana estrellensis is one of the largest trees, and a paradigm for the health and sustainability of forest biomes. For a large-yet-fragmented population (four subpopulations) in the transition zone between Brazilian Savannah and Atlantic Forest, we carried out a study of pollen flow, mating system and spatial genetic structure using nine microsatellite loci. This revealed that the subpopulations are not reproductively isolated because of pollen flow from outside the study area (18.3%) and between subpopulations (16.1–31.3%). Pollen dispersal reached long distances (3.5 km), but mating occurred predominantly between larger-diameter trees located close to mother-trees. We found that C. estrellensis is self-compatible with reproduction mediated mainly by outcrossing (&gt; 0.95), but matings were not random due to biparental inbreeding (tr: 0.048–0.124) and correlated-paternity (rp: 0.16–0.28), which was higher within (rpw: 0.524–0.95) than among fruits (rpa: 0.048–0.052). Inbreeding decreased from seedlings (0.088) to adults, indicating inbreeding depression between the seedling and adult stages. Subpopulations exhibited spatial genetic structure (50–200 m), revealing a pattern of genetic dispersion of isolation-by-distance. Seeds should be harvested from trees that are &gt; 200 m apart for successful ex-situ conservation and populations should not be isolated by more than the maximum pollen-dispersion distance observed (3.5 km) for in-situ conservation. The findings are consistent with the maximum distance that bees can disperse pollen and thereby maintain genetic connectivity between populations and resilience to population fragmentation into forest remnants.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10592-023-01557-8</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6797-9362</orcidid><orcidid>https://orcid.org/0000-0001-6939-8430</orcidid><orcidid>https://orcid.org/0000-0002-1076-9812</orcidid><orcidid>https://orcid.org/0000-0003-1458-2454</orcidid><orcidid>https://orcid.org/0000-0001-5928-4181</orcidid><orcidid>https://orcid.org/0000-0003-0839-633X</orcidid><orcidid>https://orcid.org/0000-0003-2352-0941</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1566-0621
ispartof Conservation genetics, 2024-02, Vol.25 (1), p.117-132
issn 1566-0621
1572-9737
language eng
recordid cdi_proquest_journals_2920962085
source SpringerNature Journals
subjects Animal Genetics and Genomics
Animal reproduction
Bees
Biodiversity
Biomedical and Life Sciences
Conservation
Conservation Biology/Ecology
Deforestation
Dispersion
Ecology
Evolutionary Biology
Forest fires
Forests
Fragmentation
Genetic diversity
Genetic structure
Habitat fragmentation
Inbreeding
Inbreeding depression
Life Sciences
Mating
Microsatellites
Paternity
Plant Genetics and Genomics
Plant reproduction
Pollen
Population
Population genetics
Populations
Reproductive isolation
Research Article
Resilience
Seedlings
Seeds
Subpopulations
Transition zone
Trees
title Pollen dispersal and mating patterns determine resilience for a large-yet-fragmented population of Cariniana estrellensis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T23%3A05%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pollen%20dispersal%20and%20mating%20patterns%20determine%20resilience%20for%20a%20large-yet-fragmented%20population%20of%20Cariniana%20estrellensis&rft.jtitle=Conservation%20genetics&rft.au=Kubota,%20Thaisa%20Y.%20K.&rft.date=2024-02-01&rft.volume=25&rft.issue=1&rft.spage=117&rft.epage=132&rft.pages=117-132&rft.issn=1566-0621&rft.eissn=1572-9737&rft_id=info:doi/10.1007/s10592-023-01557-8&rft_dat=%3Cproquest_cross%3E2920962085%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920962085&rft_id=info:pmid/&rfr_iscdi=true