Shrub of a thousand faces: an individual segmentation from satellite images using deep learning
Monitoring the distribution and size structure of long-living shrubs, such as Juniperus communis, can be used to estimate the long-term effects of climate change on high-mountain and high latitude ecosystems. Historical aerial very-high resolution imagery offers a retrospective tool to monitor shrub...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-01 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Khaldi, Rohaifa Tabik, Siham Puertas-Ruiz, Sergio Peñas de Giles, Julio José Antonio Hódar Correa Zamora, Regino Domingo Alcaraz Segura |
description | Monitoring the distribution and size structure of long-living shrubs, such as Juniperus communis, can be used to estimate the long-term effects of climate change on high-mountain and high latitude ecosystems. Historical aerial very-high resolution imagery offers a retrospective tool to monitor shrub growth and distribution at high precision. Currently, deep learning models provide impressive results for detecting and delineating the contour of objects with defined shapes. However, adapting these models to detect natural objects that express complex growth patterns, such as junipers, is still a challenging task. This research presents a novel approach that leverages remotely sensed RGB imagery in conjunction with Mask R-CNN-based instance segmentation models to individually delineate Juniperus shrubs above the treeline in Sierra Nevada (Spain). In this study, we propose a new data construction design that consists in using photo interpreted (PI) and field work (FW) data to respectively develop and externally validate the model. We also propose a new shrub-tailored evaluation algorithm based on a new metric called Multiple Intersections over Ground Truth Area (MIoGTA) to assess and optimize the model shrub delineation performance. Finally, we deploy the developed model for the first time to generate a wall-to-wall map of Juniperus individuals. The experimental results demonstrate the efficiency of our dual data construction approach in overcoming the limitations associated with traditional field survey methods. They also highlight the robustness of MIoGTA metric in evaluating instance segmentation models on species with complex growth patterns showing more resilience against data annotation uncertainty. Furthermore, they show the effectiveness of employing Mask R-CNN with ResNet101-C4 backbone in delineating PI and FW shrubs, achieving an F1-score of 87,87% and 76.86%, respectively. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2920920211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920920211</sourcerecordid><originalsourceid>FETCH-proquest_journals_29209202113</originalsourceid><addsrcrecordid>eNqNissKwjAQRYMgWLT_MOBaSBPrayuKe92X0U7blDSpmcTvtws_QLhwOJw7E5nSutgctkotRM7cSynVbq_KUmeiunchPcE3gBA7nxhdDQ2-iE-ADoyrzcfUCS0wtQO5iNF4B03wAzBGstZEAjNgSwyJjWuhJhrBEgY32UrMG7RM-Y9Lsb5eHufbZgz-nYhj1fsU3JQqdVRymioK_d_rC6kTRKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920920211</pqid></control><display><type>article</type><title>Shrub of a thousand faces: an individual segmentation from satellite images using deep learning</title><source>Free E- Journals</source><creator>Khaldi, Rohaifa ; Tabik, Siham ; Puertas-Ruiz, Sergio ; Peñas de Giles, Julio ; José Antonio Hódar Correa ; Zamora, Regino ; Domingo Alcaraz Segura</creator><creatorcontrib>Khaldi, Rohaifa ; Tabik, Siham ; Puertas-Ruiz, Sergio ; Peñas de Giles, Julio ; José Antonio Hódar Correa ; Zamora, Regino ; Domingo Alcaraz Segura</creatorcontrib><description>Monitoring the distribution and size structure of long-living shrubs, such as Juniperus communis, can be used to estimate the long-term effects of climate change on high-mountain and high latitude ecosystems. Historical aerial very-high resolution imagery offers a retrospective tool to monitor shrub growth and distribution at high precision. Currently, deep learning models provide impressive results for detecting and delineating the contour of objects with defined shapes. However, adapting these models to detect natural objects that express complex growth patterns, such as junipers, is still a challenging task. This research presents a novel approach that leverages remotely sensed RGB imagery in conjunction with Mask R-CNN-based instance segmentation models to individually delineate Juniperus shrubs above the treeline in Sierra Nevada (Spain). In this study, we propose a new data construction design that consists in using photo interpreted (PI) and field work (FW) data to respectively develop and externally validate the model. We also propose a new shrub-tailored evaluation algorithm based on a new metric called Multiple Intersections over Ground Truth Area (MIoGTA) to assess and optimize the model shrub delineation performance. Finally, we deploy the developed model for the first time to generate a wall-to-wall map of Juniperus individuals. The experimental results demonstrate the efficiency of our dual data construction approach in overcoming the limitations associated with traditional field survey methods. They also highlight the robustness of MIoGTA metric in evaluating instance segmentation models on species with complex growth patterns showing more resilience against data annotation uncertainty. Furthermore, they show the effectiveness of employing Mask R-CNN with ResNet101-C4 backbone in delineating PI and FW shrubs, achieving an F1-score of 87,87% and 76.86%, respectively.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Deep learning ; Ground truth ; Image resolution ; Image segmentation ; Machine learning ; Remote sensing ; Satellite imagery</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Khaldi, Rohaifa</creatorcontrib><creatorcontrib>Tabik, Siham</creatorcontrib><creatorcontrib>Puertas-Ruiz, Sergio</creatorcontrib><creatorcontrib>Peñas de Giles, Julio</creatorcontrib><creatorcontrib>José Antonio Hódar Correa</creatorcontrib><creatorcontrib>Zamora, Regino</creatorcontrib><creatorcontrib>Domingo Alcaraz Segura</creatorcontrib><title>Shrub of a thousand faces: an individual segmentation from satellite images using deep learning</title><title>arXiv.org</title><description>Monitoring the distribution and size structure of long-living shrubs, such as Juniperus communis, can be used to estimate the long-term effects of climate change on high-mountain and high latitude ecosystems. Historical aerial very-high resolution imagery offers a retrospective tool to monitor shrub growth and distribution at high precision. Currently, deep learning models provide impressive results for detecting and delineating the contour of objects with defined shapes. However, adapting these models to detect natural objects that express complex growth patterns, such as junipers, is still a challenging task. This research presents a novel approach that leverages remotely sensed RGB imagery in conjunction with Mask R-CNN-based instance segmentation models to individually delineate Juniperus shrubs above the treeline in Sierra Nevada (Spain). In this study, we propose a new data construction design that consists in using photo interpreted (PI) and field work (FW) data to respectively develop and externally validate the model. We also propose a new shrub-tailored evaluation algorithm based on a new metric called Multiple Intersections over Ground Truth Area (MIoGTA) to assess and optimize the model shrub delineation performance. Finally, we deploy the developed model for the first time to generate a wall-to-wall map of Juniperus individuals. The experimental results demonstrate the efficiency of our dual data construction approach in overcoming the limitations associated with traditional field survey methods. They also highlight the robustness of MIoGTA metric in evaluating instance segmentation models on species with complex growth patterns showing more resilience against data annotation uncertainty. Furthermore, they show the effectiveness of employing Mask R-CNN with ResNet101-C4 backbone in delineating PI and FW shrubs, achieving an F1-score of 87,87% and 76.86%, respectively.</description><subject>Algorithms</subject><subject>Deep learning</subject><subject>Ground truth</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Remote sensing</subject><subject>Satellite imagery</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNissKwjAQRYMgWLT_MOBaSBPrayuKe92X0U7blDSpmcTvtws_QLhwOJw7E5nSutgctkotRM7cSynVbq_KUmeiunchPcE3gBA7nxhdDQ2-iE-ADoyrzcfUCS0wtQO5iNF4B03wAzBGstZEAjNgSwyJjWuhJhrBEgY32UrMG7RM-Y9Lsb5eHufbZgz-nYhj1fsU3JQqdVRymioK_d_rC6kTRKM</recordid><startdate>20240131</startdate><enddate>20240131</enddate><creator>Khaldi, Rohaifa</creator><creator>Tabik, Siham</creator><creator>Puertas-Ruiz, Sergio</creator><creator>Peñas de Giles, Julio</creator><creator>José Antonio Hódar Correa</creator><creator>Zamora, Regino</creator><creator>Domingo Alcaraz Segura</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240131</creationdate><title>Shrub of a thousand faces: an individual segmentation from satellite images using deep learning</title><author>Khaldi, Rohaifa ; Tabik, Siham ; Puertas-Ruiz, Sergio ; Peñas de Giles, Julio ; José Antonio Hódar Correa ; Zamora, Regino ; Domingo Alcaraz Segura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29209202113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Deep learning</topic><topic>Ground truth</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Remote sensing</topic><topic>Satellite imagery</topic><toplevel>online_resources</toplevel><creatorcontrib>Khaldi, Rohaifa</creatorcontrib><creatorcontrib>Tabik, Siham</creatorcontrib><creatorcontrib>Puertas-Ruiz, Sergio</creatorcontrib><creatorcontrib>Peñas de Giles, Julio</creatorcontrib><creatorcontrib>José Antonio Hódar Correa</creatorcontrib><creatorcontrib>Zamora, Regino</creatorcontrib><creatorcontrib>Domingo Alcaraz Segura</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khaldi, Rohaifa</au><au>Tabik, Siham</au><au>Puertas-Ruiz, Sergio</au><au>Peñas de Giles, Julio</au><au>José Antonio Hódar Correa</au><au>Zamora, Regino</au><au>Domingo Alcaraz Segura</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Shrub of a thousand faces: an individual segmentation from satellite images using deep learning</atitle><jtitle>arXiv.org</jtitle><date>2024-01-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>Monitoring the distribution and size structure of long-living shrubs, such as Juniperus communis, can be used to estimate the long-term effects of climate change on high-mountain and high latitude ecosystems. Historical aerial very-high resolution imagery offers a retrospective tool to monitor shrub growth and distribution at high precision. Currently, deep learning models provide impressive results for detecting and delineating the contour of objects with defined shapes. However, adapting these models to detect natural objects that express complex growth patterns, such as junipers, is still a challenging task. This research presents a novel approach that leverages remotely sensed RGB imagery in conjunction with Mask R-CNN-based instance segmentation models to individually delineate Juniperus shrubs above the treeline in Sierra Nevada (Spain). In this study, we propose a new data construction design that consists in using photo interpreted (PI) and field work (FW) data to respectively develop and externally validate the model. We also propose a new shrub-tailored evaluation algorithm based on a new metric called Multiple Intersections over Ground Truth Area (MIoGTA) to assess and optimize the model shrub delineation performance. Finally, we deploy the developed model for the first time to generate a wall-to-wall map of Juniperus individuals. The experimental results demonstrate the efficiency of our dual data construction approach in overcoming the limitations associated with traditional field survey methods. They also highlight the robustness of MIoGTA metric in evaluating instance segmentation models on species with complex growth patterns showing more resilience against data annotation uncertainty. Furthermore, they show the effectiveness of employing Mask R-CNN with ResNet101-C4 backbone in delineating PI and FW shrubs, achieving an F1-score of 87,87% and 76.86%, respectively.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2920920211 |
source | Free E- Journals |
subjects | Algorithms Deep learning Ground truth Image resolution Image segmentation Machine learning Remote sensing Satellite imagery |
title | Shrub of a thousand faces: an individual segmentation from satellite images using deep learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Shrub%20of%20a%20thousand%20faces:%20an%20individual%20segmentation%20from%20satellite%20images%20using%20deep%20learning&rft.jtitle=arXiv.org&rft.au=Khaldi,%20Rohaifa&rft.date=2024-01-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2920920211%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920920211&rft_id=info:pmid/&rfr_iscdi=true |