Linguistically Communicating Uncertainty in Patient-Facing Risk Prediction Models
This paper addresses the unique challenges associated with uncertainty quantification in AI models when applied to patient-facing contexts within healthcare. Unlike traditional eXplainable Artificial Intelligence (XAI) methods tailored for model developers or domain experts, additional consideration...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Sivaprasad, Adarsa Reiter, Ehud |
description | This paper addresses the unique challenges associated with uncertainty quantification in AI models when applied to patient-facing contexts within healthcare. Unlike traditional eXplainable Artificial Intelligence (XAI) methods tailored for model developers or domain experts, additional considerations of communicating in natural language, its presentation and evaluating understandability are necessary. We identify the challenges in communication model performance, confidence, reasoning and unknown knowns using natural language in the context of risk prediction. We propose a design aimed at addressing these challenges, focusing on the specific application of in-vitro fertilisation outcome prediction. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2920920138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920920138</sourcerecordid><originalsourceid>FETCH-proquest_journals_29209201383</originalsourceid><addsrcrecordid>eNqNikEKwjAURIMgWLR3CLgupInVui4WFwoqui4hjfJr-qNJuujtjeABhIFh3psJSbgQeVauOJ-R1PuOMcbXG14UIiHnA-BjAB9ASWNGWtm-HzCOEDm9odIuSMAwUkB6ilRjyGqpvvYC_klPTregAlikR9tq4xdkepfG6_TXc7Ksd9dqn72cfQ_ah6azg8OoGr7lLCYXpfjv9QEInj_e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920920138</pqid></control><display><type>article</type><title>Linguistically Communicating Uncertainty in Patient-Facing Risk Prediction Models</title><source>Free E- Journals</source><creator>Sivaprasad, Adarsa ; Reiter, Ehud</creator><creatorcontrib>Sivaprasad, Adarsa ; Reiter, Ehud</creatorcontrib><description>This paper addresses the unique challenges associated with uncertainty quantification in AI models when applied to patient-facing contexts within healthcare. Unlike traditional eXplainable Artificial Intelligence (XAI) methods tailored for model developers or domain experts, additional considerations of communicating in natural language, its presentation and evaluating understandability are necessary. We identify the challenges in communication model performance, confidence, reasoning and unknown knowns using natural language in the context of risk prediction. We propose a design aimed at addressing these challenges, focusing on the specific application of in-vitro fertilisation outcome prediction.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Explainable artificial intelligence ; In vitro fertilization ; Prediction models ; Risk communication ; Uncertainty</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sivaprasad, Adarsa</creatorcontrib><creatorcontrib>Reiter, Ehud</creatorcontrib><title>Linguistically Communicating Uncertainty in Patient-Facing Risk Prediction Models</title><title>arXiv.org</title><description>This paper addresses the unique challenges associated with uncertainty quantification in AI models when applied to patient-facing contexts within healthcare. Unlike traditional eXplainable Artificial Intelligence (XAI) methods tailored for model developers or domain experts, additional considerations of communicating in natural language, its presentation and evaluating understandability are necessary. We identify the challenges in communication model performance, confidence, reasoning and unknown knowns using natural language in the context of risk prediction. We propose a design aimed at addressing these challenges, focusing on the specific application of in-vitro fertilisation outcome prediction.</description><subject>Explainable artificial intelligence</subject><subject>In vitro fertilization</subject><subject>Prediction models</subject><subject>Risk communication</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEKwjAURIMgWLR3CLgupInVui4WFwoqui4hjfJr-qNJuujtjeABhIFh3psJSbgQeVauOJ-R1PuOMcbXG14UIiHnA-BjAB9ASWNGWtm-HzCOEDm9odIuSMAwUkB6ilRjyGqpvvYC_klPTregAlikR9tq4xdkepfG6_TXc7Ksd9dqn72cfQ_ah6azg8OoGr7lLCYXpfjv9QEInj_e</recordid><startdate>20240131</startdate><enddate>20240131</enddate><creator>Sivaprasad, Adarsa</creator><creator>Reiter, Ehud</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240131</creationdate><title>Linguistically Communicating Uncertainty in Patient-Facing Risk Prediction Models</title><author>Sivaprasad, Adarsa ; Reiter, Ehud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29209201383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Explainable artificial intelligence</topic><topic>In vitro fertilization</topic><topic>Prediction models</topic><topic>Risk communication</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Sivaprasad, Adarsa</creatorcontrib><creatorcontrib>Reiter, Ehud</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivaprasad, Adarsa</au><au>Reiter, Ehud</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Linguistically Communicating Uncertainty in Patient-Facing Risk Prediction Models</atitle><jtitle>arXiv.org</jtitle><date>2024-01-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper addresses the unique challenges associated with uncertainty quantification in AI models when applied to patient-facing contexts within healthcare. Unlike traditional eXplainable Artificial Intelligence (XAI) methods tailored for model developers or domain experts, additional considerations of communicating in natural language, its presentation and evaluating understandability are necessary. We identify the challenges in communication model performance, confidence, reasoning and unknown knowns using natural language in the context of risk prediction. We propose a design aimed at addressing these challenges, focusing on the specific application of in-vitro fertilisation outcome prediction.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2920920138 |
source | Free E- Journals |
subjects | Explainable artificial intelligence In vitro fertilization Prediction models Risk communication Uncertainty |
title | Linguistically Communicating Uncertainty in Patient-Facing Risk Prediction Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Linguistically%20Communicating%20Uncertainty%20in%20Patient-Facing%20Risk%20Prediction%20Models&rft.jtitle=arXiv.org&rft.au=Sivaprasad,%20Adarsa&rft.date=2024-01-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2920920138%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920920138&rft_id=info:pmid/&rfr_iscdi=true |