Linguistically Communicating Uncertainty in Patient-Facing Risk Prediction Models

This paper addresses the unique challenges associated with uncertainty quantification in AI models when applied to patient-facing contexts within healthcare. Unlike traditional eXplainable Artificial Intelligence (XAI) methods tailored for model developers or domain experts, additional consideration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Sivaprasad, Adarsa, Reiter, Ehud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sivaprasad, Adarsa
Reiter, Ehud
description This paper addresses the unique challenges associated with uncertainty quantification in AI models when applied to patient-facing contexts within healthcare. Unlike traditional eXplainable Artificial Intelligence (XAI) methods tailored for model developers or domain experts, additional considerations of communicating in natural language, its presentation and evaluating understandability are necessary. We identify the challenges in communication model performance, confidence, reasoning and unknown knowns using natural language in the context of risk prediction. We propose a design aimed at addressing these challenges, focusing on the specific application of in-vitro fertilisation outcome prediction.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2920920138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920920138</sourcerecordid><originalsourceid>FETCH-proquest_journals_29209201383</originalsourceid><addsrcrecordid>eNqNikEKwjAURIMgWLR3CLgupInVui4WFwoqui4hjfJr-qNJuujtjeABhIFh3psJSbgQeVauOJ-R1PuOMcbXG14UIiHnA-BjAB9ASWNGWtm-HzCOEDm9odIuSMAwUkB6ilRjyGqpvvYC_klPTregAlikR9tq4xdkepfG6_TXc7Ksd9dqn72cfQ_ah6azg8OoGr7lLCYXpfjv9QEInj_e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920920138</pqid></control><display><type>article</type><title>Linguistically Communicating Uncertainty in Patient-Facing Risk Prediction Models</title><source>Free E- Journals</source><creator>Sivaprasad, Adarsa ; Reiter, Ehud</creator><creatorcontrib>Sivaprasad, Adarsa ; Reiter, Ehud</creatorcontrib><description>This paper addresses the unique challenges associated with uncertainty quantification in AI models when applied to patient-facing contexts within healthcare. Unlike traditional eXplainable Artificial Intelligence (XAI) methods tailored for model developers or domain experts, additional considerations of communicating in natural language, its presentation and evaluating understandability are necessary. We identify the challenges in communication model performance, confidence, reasoning and unknown knowns using natural language in the context of risk prediction. We propose a design aimed at addressing these challenges, focusing on the specific application of in-vitro fertilisation outcome prediction.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Explainable artificial intelligence ; In vitro fertilization ; Prediction models ; Risk communication ; Uncertainty</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Sivaprasad, Adarsa</creatorcontrib><creatorcontrib>Reiter, Ehud</creatorcontrib><title>Linguistically Communicating Uncertainty in Patient-Facing Risk Prediction Models</title><title>arXiv.org</title><description>This paper addresses the unique challenges associated with uncertainty quantification in AI models when applied to patient-facing contexts within healthcare. Unlike traditional eXplainable Artificial Intelligence (XAI) methods tailored for model developers or domain experts, additional considerations of communicating in natural language, its presentation and evaluating understandability are necessary. We identify the challenges in communication model performance, confidence, reasoning and unknown knowns using natural language in the context of risk prediction. We propose a design aimed at addressing these challenges, focusing on the specific application of in-vitro fertilisation outcome prediction.</description><subject>Explainable artificial intelligence</subject><subject>In vitro fertilization</subject><subject>Prediction models</subject><subject>Risk communication</subject><subject>Uncertainty</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEKwjAURIMgWLR3CLgupInVui4WFwoqui4hjfJr-qNJuujtjeABhIFh3psJSbgQeVauOJ-R1PuOMcbXG14UIiHnA-BjAB9ASWNGWtm-HzCOEDm9odIuSMAwUkB6ilRjyGqpvvYC_klPTregAlikR9tq4xdkepfG6_TXc7Ksd9dqn72cfQ_ah6azg8OoGr7lLCYXpfjv9QEInj_e</recordid><startdate>20240131</startdate><enddate>20240131</enddate><creator>Sivaprasad, Adarsa</creator><creator>Reiter, Ehud</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240131</creationdate><title>Linguistically Communicating Uncertainty in Patient-Facing Risk Prediction Models</title><author>Sivaprasad, Adarsa ; Reiter, Ehud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29209201383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Explainable artificial intelligence</topic><topic>In vitro fertilization</topic><topic>Prediction models</topic><topic>Risk communication</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Sivaprasad, Adarsa</creatorcontrib><creatorcontrib>Reiter, Ehud</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sivaprasad, Adarsa</au><au>Reiter, Ehud</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Linguistically Communicating Uncertainty in Patient-Facing Risk Prediction Models</atitle><jtitle>arXiv.org</jtitle><date>2024-01-31</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper addresses the unique challenges associated with uncertainty quantification in AI models when applied to patient-facing contexts within healthcare. Unlike traditional eXplainable Artificial Intelligence (XAI) methods tailored for model developers or domain experts, additional considerations of communicating in natural language, its presentation and evaluating understandability are necessary. We identify the challenges in communication model performance, confidence, reasoning and unknown knowns using natural language in the context of risk prediction. We propose a design aimed at addressing these challenges, focusing on the specific application of in-vitro fertilisation outcome prediction.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2920920138
source Free E- Journals
subjects Explainable artificial intelligence
In vitro fertilization
Prediction models
Risk communication
Uncertainty
title Linguistically Communicating Uncertainty in Patient-Facing Risk Prediction Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T03%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Linguistically%20Communicating%20Uncertainty%20in%20Patient-Facing%20Risk%20Prediction%20Models&rft.jtitle=arXiv.org&rft.au=Sivaprasad,%20Adarsa&rft.date=2024-01-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2920920138%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920920138&rft_id=info:pmid/&rfr_iscdi=true