Towards Semantic Consistency: Dirichlet Energy Driven Robust Multi-Modal Entity Alignment
In Multi-Modal Knowledge Graphs (MMKGs), Multi-Modal Entity Alignment (MMEA) is crucial for identifying identical entities across diverse modal attributes. However, semantic inconsistency, mainly due to missing modal attributes, poses a significant challenge. Traditional approaches rely on attribute...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Wang, Yuanyi Sun, Haifeng Wang, Jiabo Wang, Jingyu Tang, Wei Qi, Qi Sun, Shaoling Liao, Jianxin |
description | In Multi-Modal Knowledge Graphs (MMKGs), Multi-Modal Entity Alignment (MMEA) is crucial for identifying identical entities across diverse modal attributes. However, semantic inconsistency, mainly due to missing modal attributes, poses a significant challenge. Traditional approaches rely on attribute interpolation, but this often introduces modality noise, distorting the original semantics. Moreover, the lack of a universal theoretical framework limits advancements in achieving semantic consistency. This study introduces a novel approach, DESAlign, which addresses these issues by applying a theoretical framework based on Dirichlet energy to ensure semantic consistency. We discover that semantic inconsistency leads to model overfitting to modality noise, causing performance fluctuations, particularly when modalities are missing. DESAlign innovatively combats over-smoothing and interpolates absent semantics using existing modalities. Our approach includes a multi-modal knowledge graph learning strategy and a propagation technique that employs existing semantic features to compensate for missing ones, providing explicit Euler solutions. Comprehensive evaluations across 60 benchmark splits, including monolingual and bilingual scenarios, demonstrate that DESAlign surpasses existing methods, setting a new standard in performance. Further testing with high rates of missing modalities confirms its robustness, offering an effective solution to semantic inconsistency in real-world MMKGs. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2920902505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920902505</sourcerecordid><originalsourceid>FETCH-proquest_journals_29209025053</originalsourceid><addsrcrecordid>eNqNyjEOgjAYQOHGxESi3KGJM0ktVsXNAMaFRVmcSIWKJaXV9q-G28vgAZze8L4JCmgcr6LdmtIZCp3rCCF0s6WMxQG6lubDbePwRfRcg6xxarSTDoSuhz3OpJX1QwnAuRa2HXBm5VtofDY37wAXXoGMCtNwNQKQMOCDkq3uhYYFmt65ciL8dY6Wx7xMT9HTmpcXDqrOeKvHVdGEkoRQRlj8n_oC8dZCUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920902505</pqid></control><display><type>article</type><title>Towards Semantic Consistency: Dirichlet Energy Driven Robust Multi-Modal Entity Alignment</title><source>Open Access: Freely Accessible Journals by multiple vendors</source><creator>Wang, Yuanyi ; Sun, Haifeng ; Wang, Jiabo ; Wang, Jingyu ; Tang, Wei ; Qi, Qi ; Sun, Shaoling ; Liao, Jianxin</creator><creatorcontrib>Wang, Yuanyi ; Sun, Haifeng ; Wang, Jiabo ; Wang, Jingyu ; Tang, Wei ; Qi, Qi ; Sun, Shaoling ; Liao, Jianxin</creatorcontrib><description>In Multi-Modal Knowledge Graphs (MMKGs), Multi-Modal Entity Alignment (MMEA) is crucial for identifying identical entities across diverse modal attributes. However, semantic inconsistency, mainly due to missing modal attributes, poses a significant challenge. Traditional approaches rely on attribute interpolation, but this often introduces modality noise, distorting the original semantics. Moreover, the lack of a universal theoretical framework limits advancements in achieving semantic consistency. This study introduces a novel approach, DESAlign, which addresses these issues by applying a theoretical framework based on Dirichlet energy to ensure semantic consistency. We discover that semantic inconsistency leads to model overfitting to modality noise, causing performance fluctuations, particularly when modalities are missing. DESAlign innovatively combats over-smoothing and interpolates absent semantics using existing modalities. Our approach includes a multi-modal knowledge graph learning strategy and a propagation technique that employs existing semantic features to compensate for missing ones, providing explicit Euler solutions. Comprehensive evaluations across 60 benchmark splits, including monolingual and bilingual scenarios, demonstrate that DESAlign surpasses existing methods, setting a new standard in performance. Further testing with high rates of missing modalities confirms its robustness, offering an effective solution to semantic inconsistency in real-world MMKGs.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Alignment ; Benchmarks ; Consistency ; Dirichlet problem ; Interpolation ; Knowledge representation ; Robustness (mathematics) ; Semantics</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Wang, Yuanyi</creatorcontrib><creatorcontrib>Sun, Haifeng</creatorcontrib><creatorcontrib>Wang, Jiabo</creatorcontrib><creatorcontrib>Wang, Jingyu</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Qi, Qi</creatorcontrib><creatorcontrib>Sun, Shaoling</creatorcontrib><creatorcontrib>Liao, Jianxin</creatorcontrib><title>Towards Semantic Consistency: Dirichlet Energy Driven Robust Multi-Modal Entity Alignment</title><title>arXiv.org</title><description>In Multi-Modal Knowledge Graphs (MMKGs), Multi-Modal Entity Alignment (MMEA) is crucial for identifying identical entities across diverse modal attributes. However, semantic inconsistency, mainly due to missing modal attributes, poses a significant challenge. Traditional approaches rely on attribute interpolation, but this often introduces modality noise, distorting the original semantics. Moreover, the lack of a universal theoretical framework limits advancements in achieving semantic consistency. This study introduces a novel approach, DESAlign, which addresses these issues by applying a theoretical framework based on Dirichlet energy to ensure semantic consistency. We discover that semantic inconsistency leads to model overfitting to modality noise, causing performance fluctuations, particularly when modalities are missing. DESAlign innovatively combats over-smoothing and interpolates absent semantics using existing modalities. Our approach includes a multi-modal knowledge graph learning strategy and a propagation technique that employs existing semantic features to compensate for missing ones, providing explicit Euler solutions. Comprehensive evaluations across 60 benchmark splits, including monolingual and bilingual scenarios, demonstrate that DESAlign surpasses existing methods, setting a new standard in performance. Further testing with high rates of missing modalities confirms its robustness, offering an effective solution to semantic inconsistency in real-world MMKGs.</description><subject>Alignment</subject><subject>Benchmarks</subject><subject>Consistency</subject><subject>Dirichlet problem</subject><subject>Interpolation</subject><subject>Knowledge representation</subject><subject>Robustness (mathematics)</subject><subject>Semantics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyjEOgjAYQOHGxESi3KGJM0ktVsXNAMaFRVmcSIWKJaXV9q-G28vgAZze8L4JCmgcr6LdmtIZCp3rCCF0s6WMxQG6lubDbePwRfRcg6xxarSTDoSuhz3OpJX1QwnAuRa2HXBm5VtofDY37wAXXoGMCtNwNQKQMOCDkq3uhYYFmt65ciL8dY6Wx7xMT9HTmpcXDqrOeKvHVdGEkoRQRlj8n_oC8dZCUA</recordid><startdate>20240319</startdate><enddate>20240319</enddate><creator>Wang, Yuanyi</creator><creator>Sun, Haifeng</creator><creator>Wang, Jiabo</creator><creator>Wang, Jingyu</creator><creator>Tang, Wei</creator><creator>Qi, Qi</creator><creator>Sun, Shaoling</creator><creator>Liao, Jianxin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240319</creationdate><title>Towards Semantic Consistency: Dirichlet Energy Driven Robust Multi-Modal Entity Alignment</title><author>Wang, Yuanyi ; Sun, Haifeng ; Wang, Jiabo ; Wang, Jingyu ; Tang, Wei ; Qi, Qi ; Sun, Shaoling ; Liao, Jianxin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29209025053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alignment</topic><topic>Benchmarks</topic><topic>Consistency</topic><topic>Dirichlet problem</topic><topic>Interpolation</topic><topic>Knowledge representation</topic><topic>Robustness (mathematics)</topic><topic>Semantics</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuanyi</creatorcontrib><creatorcontrib>Sun, Haifeng</creatorcontrib><creatorcontrib>Wang, Jiabo</creatorcontrib><creatorcontrib>Wang, Jingyu</creatorcontrib><creatorcontrib>Tang, Wei</creatorcontrib><creatorcontrib>Qi, Qi</creatorcontrib><creatorcontrib>Sun, Shaoling</creatorcontrib><creatorcontrib>Liao, Jianxin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuanyi</au><au>Sun, Haifeng</au><au>Wang, Jiabo</au><au>Wang, Jingyu</au><au>Tang, Wei</au><au>Qi, Qi</au><au>Sun, Shaoling</au><au>Liao, Jianxin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards Semantic Consistency: Dirichlet Energy Driven Robust Multi-Modal Entity Alignment</atitle><jtitle>arXiv.org</jtitle><date>2024-03-19</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In Multi-Modal Knowledge Graphs (MMKGs), Multi-Modal Entity Alignment (MMEA) is crucial for identifying identical entities across diverse modal attributes. However, semantic inconsistency, mainly due to missing modal attributes, poses a significant challenge. Traditional approaches rely on attribute interpolation, but this often introduces modality noise, distorting the original semantics. Moreover, the lack of a universal theoretical framework limits advancements in achieving semantic consistency. This study introduces a novel approach, DESAlign, which addresses these issues by applying a theoretical framework based on Dirichlet energy to ensure semantic consistency. We discover that semantic inconsistency leads to model overfitting to modality noise, causing performance fluctuations, particularly when modalities are missing. DESAlign innovatively combats over-smoothing and interpolates absent semantics using existing modalities. Our approach includes a multi-modal knowledge graph learning strategy and a propagation technique that employs existing semantic features to compensate for missing ones, providing explicit Euler solutions. Comprehensive evaluations across 60 benchmark splits, including monolingual and bilingual scenarios, demonstrate that DESAlign surpasses existing methods, setting a new standard in performance. Further testing with high rates of missing modalities confirms its robustness, offering an effective solution to semantic inconsistency in real-world MMKGs.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2920902505 |
source | Open Access: Freely Accessible Journals by multiple vendors |
subjects | Alignment Benchmarks Consistency Dirichlet problem Interpolation Knowledge representation Robustness (mathematics) Semantics |
title | Towards Semantic Consistency: Dirichlet Energy Driven Robust Multi-Modal Entity Alignment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20Semantic%20Consistency:%20Dirichlet%20Energy%20Driven%20Robust%20Multi-Modal%20Entity%20Alignment&rft.jtitle=arXiv.org&rft.au=Wang,%20Yuanyi&rft.date=2024-03-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2920902505%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920902505&rft_id=info:pmid/&rfr_iscdi=true |