Aerodynamic shape optimization using design-variables-screening method
Aerodynamic shape optimization involving a complex geometric model or problem may have tens or hundreds of design variables, necessitating multiple accurate but time-consuming computational fluid dynamics simulations to produce optimal designs, which greatly affects the efficiency of optimization an...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2024-02, Vol.36 (2) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 36 |
creator | Xu, Xiaoyu Duan, Yanhui Wang, Guangxue Chen, Hongbo Zhang, Chenliang |
description | Aerodynamic shape optimization involving a complex geometric model or problem may have tens or hundreds of design variables, necessitating multiple accurate but time-consuming computational fluid dynamics simulations to produce optimal designs, which greatly affects the efficiency of optimization and. To address this challenge, this article proposes an efficient optimization method based on design-variables-screening. Within the framework of the method, a complicated input–output relationship is broken down into quantitative effects. The influence of design variables on the objective function is calculated by the Kriging regression model and functional analysis of variance. In the meantime, a screening strategy is proposed to facilitate the selection of design variables for optimization. The less important design variables in the problems of interest are fixed so that the dimensionality of the problems is reduced to save computational cost. Experimental results on the National Advisory Committee for Aeronautics airfoil (NACA0012) demonstrate that the simplified model with the screening strategy achieves nearly the same reduction in drag coefficient as the conventional method that optimizes all design variables. Moreover, it significantly enhances the efficiency of optimization and contributes to the enhancement of flow stability. |
doi_str_mv | 10.1063/5.0185645 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2920769728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920769728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-95bc6fa5fd15d13b69e0d1c7d83ead3f2197700458bb247b7a6454f34c7276d03</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKsH_8GCJ4XUl2STbI6lWBUKXvQcskm2Telu1mQr1F_v1nr29AbexwwzCN0SmBEQ7JHPgFRclPwMTQhUCkshxPlRS8BCMHKJrnLeAgBTVEzQcu5TdIfOtMEWeWN6X8R-CG34NkOIXbHPoVsXzuew7vCXScHUO59xtsn77vhq_bCJ7hpdNGaX_c3fnaKP5dP74gWv3p5fF_MVtrSSA1a8tqIxvHGEO8JqoTw4YqWrmDeONZQoKQFKXtU1LWUtzdikbFhpJZXCAZuiu5Nvn-Ln3udBb-M-dWOkpoqCFErSaqTuT5RNMefkG92n0Jp00AT0cSbN9d9MI_twYrMNw2_nf-AfftVnNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920769728</pqid></control><display><type>article</type><title>Aerodynamic shape optimization using design-variables-screening method</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Xu, Xiaoyu ; Duan, Yanhui ; Wang, Guangxue ; Chen, Hongbo ; Zhang, Chenliang</creator><creatorcontrib>Xu, Xiaoyu ; Duan, Yanhui ; Wang, Guangxue ; Chen, Hongbo ; Zhang, Chenliang</creatorcontrib><description>Aerodynamic shape optimization involving a complex geometric model or problem may have tens or hundreds of design variables, necessitating multiple accurate but time-consuming computational fluid dynamics simulations to produce optimal designs, which greatly affects the efficiency of optimization and. To address this challenge, this article proposes an efficient optimization method based on design-variables-screening. Within the framework of the method, a complicated input–output relationship is broken down into quantitative effects. The influence of design variables on the objective function is calculated by the Kriging regression model and functional analysis of variance. In the meantime, a screening strategy is proposed to facilitate the selection of design variables for optimization. The less important design variables in the problems of interest are fixed so that the dimensionality of the problems is reduced to save computational cost. Experimental results on the National Advisory Committee for Aeronautics airfoil (NACA0012) demonstrate that the simplified model with the screening strategy achieves nearly the same reduction in drag coefficient as the conventional method that optimizes all design variables. Moreover, it significantly enhances the efficiency of optimization and contributes to the enhancement of flow stability.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0185645</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aeronautics ; Computational fluid dynamics ; Computing costs ; Design optimization ; Drag coefficients ; Drag reduction ; Flow stability ; Functional analysis ; Optimization ; Regression models ; Screening ; Shape optimization ; Variance analysis</subject><ispartof>Physics of fluids (1994), 2024-02, Vol.36 (2)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-95bc6fa5fd15d13b69e0d1c7d83ead3f2197700458bb247b7a6454f34c7276d03</cites><orcidid>0000-0002-5901-6440 ; 0009-0001-1128-0138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Xu, Xiaoyu</creatorcontrib><creatorcontrib>Duan, Yanhui</creatorcontrib><creatorcontrib>Wang, Guangxue</creatorcontrib><creatorcontrib>Chen, Hongbo</creatorcontrib><creatorcontrib>Zhang, Chenliang</creatorcontrib><title>Aerodynamic shape optimization using design-variables-screening method</title><title>Physics of fluids (1994)</title><description>Aerodynamic shape optimization involving a complex geometric model or problem may have tens or hundreds of design variables, necessitating multiple accurate but time-consuming computational fluid dynamics simulations to produce optimal designs, which greatly affects the efficiency of optimization and. To address this challenge, this article proposes an efficient optimization method based on design-variables-screening. Within the framework of the method, a complicated input–output relationship is broken down into quantitative effects. The influence of design variables on the objective function is calculated by the Kriging regression model and functional analysis of variance. In the meantime, a screening strategy is proposed to facilitate the selection of design variables for optimization. The less important design variables in the problems of interest are fixed so that the dimensionality of the problems is reduced to save computational cost. Experimental results on the National Advisory Committee for Aeronautics airfoil (NACA0012) demonstrate that the simplified model with the screening strategy achieves nearly the same reduction in drag coefficient as the conventional method that optimizes all design variables. Moreover, it significantly enhances the efficiency of optimization and contributes to the enhancement of flow stability.</description><subject>Aeronautics</subject><subject>Computational fluid dynamics</subject><subject>Computing costs</subject><subject>Design optimization</subject><subject>Drag coefficients</subject><subject>Drag reduction</subject><subject>Flow stability</subject><subject>Functional analysis</subject><subject>Optimization</subject><subject>Regression models</subject><subject>Screening</subject><subject>Shape optimization</subject><subject>Variance analysis</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEUhIMoWKsH_8GCJ4XUl2STbI6lWBUKXvQcskm2Telu1mQr1F_v1nr29AbexwwzCN0SmBEQ7JHPgFRclPwMTQhUCkshxPlRS8BCMHKJrnLeAgBTVEzQcu5TdIfOtMEWeWN6X8R-CG34NkOIXbHPoVsXzuew7vCXScHUO59xtsn77vhq_bCJ7hpdNGaX_c3fnaKP5dP74gWv3p5fF_MVtrSSA1a8tqIxvHGEO8JqoTw4YqWrmDeONZQoKQFKXtU1LWUtzdikbFhpJZXCAZuiu5Nvn-Ln3udBb-M-dWOkpoqCFErSaqTuT5RNMefkG92n0Jp00AT0cSbN9d9MI_twYrMNw2_nf-AfftVnNg</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Xu, Xiaoyu</creator><creator>Duan, Yanhui</creator><creator>Wang, Guangxue</creator><creator>Chen, Hongbo</creator><creator>Zhang, Chenliang</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5901-6440</orcidid><orcidid>https://orcid.org/0009-0001-1128-0138</orcidid></search><sort><creationdate>202402</creationdate><title>Aerodynamic shape optimization using design-variables-screening method</title><author>Xu, Xiaoyu ; Duan, Yanhui ; Wang, Guangxue ; Chen, Hongbo ; Zhang, Chenliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-95bc6fa5fd15d13b69e0d1c7d83ead3f2197700458bb247b7a6454f34c7276d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aeronautics</topic><topic>Computational fluid dynamics</topic><topic>Computing costs</topic><topic>Design optimization</topic><topic>Drag coefficients</topic><topic>Drag reduction</topic><topic>Flow stability</topic><topic>Functional analysis</topic><topic>Optimization</topic><topic>Regression models</topic><topic>Screening</topic><topic>Shape optimization</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Xiaoyu</creatorcontrib><creatorcontrib>Duan, Yanhui</creatorcontrib><creatorcontrib>Wang, Guangxue</creatorcontrib><creatorcontrib>Chen, Hongbo</creatorcontrib><creatorcontrib>Zhang, Chenliang</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Xiaoyu</au><au>Duan, Yanhui</au><au>Wang, Guangxue</au><au>Chen, Hongbo</au><au>Zhang, Chenliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aerodynamic shape optimization using design-variables-screening method</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2024-02</date><risdate>2024</risdate><volume>36</volume><issue>2</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Aerodynamic shape optimization involving a complex geometric model or problem may have tens or hundreds of design variables, necessitating multiple accurate but time-consuming computational fluid dynamics simulations to produce optimal designs, which greatly affects the efficiency of optimization and. To address this challenge, this article proposes an efficient optimization method based on design-variables-screening. Within the framework of the method, a complicated input–output relationship is broken down into quantitative effects. The influence of design variables on the objective function is calculated by the Kriging regression model and functional analysis of variance. In the meantime, a screening strategy is proposed to facilitate the selection of design variables for optimization. The less important design variables in the problems of interest are fixed so that the dimensionality of the problems is reduced to save computational cost. Experimental results on the National Advisory Committee for Aeronautics airfoil (NACA0012) demonstrate that the simplified model with the screening strategy achieves nearly the same reduction in drag coefficient as the conventional method that optimizes all design variables. Moreover, it significantly enhances the efficiency of optimization and contributes to the enhancement of flow stability.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0185645</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5901-6440</orcidid><orcidid>https://orcid.org/0009-0001-1128-0138</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2024-02, Vol.36 (2) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_proquest_journals_2920769728 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection |
subjects | Aeronautics Computational fluid dynamics Computing costs Design optimization Drag coefficients Drag reduction Flow stability Functional analysis Optimization Regression models Screening Shape optimization Variance analysis |
title | Aerodynamic shape optimization using design-variables-screening method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A29%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aerodynamic%20shape%20optimization%20using%20design-variables-screening%20method&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Xu,%20Xiaoyu&rft.date=2024-02&rft.volume=36&rft.issue=2&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0185645&rft_dat=%3Cproquest_scita%3E2920769728%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920769728&rft_id=info:pmid/&rfr_iscdi=true |