Different metal dopants effects on the structural, electronic, and optical properties of β-PbO: a density functional theory study

The β-PbO has low electrical conductivity relative to α-PbO which hinders its application in optoelectronics and other technological devices. The structural, electrical, and optical properties of Co 2+ , Ni 2+ , Cu 2+ , Li + , and Sn 2+ -doped β-PbO at the Pb site were investigated in this work usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2023-02, Vol.138 (2), p.165, Article 165
Hauptverfasser: Geldasa, Fikadu Takele, Kebede, Mesfin Abayneh, Shura, Megersa Wodajo, Hone, Fekadu Gashaw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 165
container_title European physical journal plus
container_volume 138
creator Geldasa, Fikadu Takele
Kebede, Mesfin Abayneh
Shura, Megersa Wodajo
Hone, Fekadu Gashaw
description The β-PbO has low electrical conductivity relative to α-PbO which hinders its application in optoelectronics and other technological devices. The structural, electrical, and optical properties of Co 2+ , Ni 2+ , Cu 2+ , Li + , and Sn 2+ -doped β-PbO at the Pb site were investigated in this work using Quantum espresso as a DFT tool. The GGA and LDA exchange functionals were used for band structure calculations. The indirect band gap property is indicated by the calculation of electronic band structure, with spin up state band gap values of 2.28 eV, 0.68 eV, 1.01 eV, 1.57 eV, 1.79 eV, and 1.76 eV for pristine, Co 2+ , Ni 2+ , Cu 2+ , Li + , and Sn 2+ -doped β-PbO, respectively. The spin down states band gap of Co 2+ and Ni 2+ was 0.1 eV and 0.32 eV, whereas other dopants and pristine β-PbO equal with spin up states. The PDOS calculation shows how each orbital contributes to the formation of deep level valence band, shallow level valence band, and conduction band states. Dopant effects on optical properties such as JDOS, dielectric functions, refractive index, extinction coefficient, reflectivity, absorption coefficient, electron energy loss spectrum, and optical conductivity were thoroughly discussed. This research provides in-depth functional characteristics for guiding laboratory working experiments and the applications of these materials in various fields such as energy storage and solar cells.
doi_str_mv 10.1140/epjp/s13360-023-03718-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920656425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920656425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-e1e487bd9d7b1fb8327e2e31471dde8fd5e4c8bb14d70cf073ddac602520adbe3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhgdRsGifwYDbjs1tmhl3Uq9QqAtdh0xyolPaZEwyi259JB_EZzK1gu7M5oTk_34OX1GcEXxBCMdT6Ff9NBLGZrjElJWYCVKX4qAYUdLgsuKcH_65HxfjGFc4H94Q3vBR8X7dWQsBXEIbSGqNjO-VSxFBftZ5eofSK6CYwqDTENR6gmCdf4J3nZ4g5Qzyfep0Rvvgewipg0xZ9PlRPrbLS6SQARe7tEV2cDp13uVorvRhm1sHsz0tjqxaRxj_zJPi-fbmaX5fLpZ3D_OrRakZ46kEArwWrWmMaIlta0YFUGCEC2IM1NZUwHXdtoQbgbXFghmj9AzTimJlWmAnxfm-N-_5NkBMcuWHkLeJkjYUz6oZp1VOiX1KBx9jACv70G1U2EqC5c653DmXe-cyO5ffzqXIZL0nYybcC4Tf_v_QL9sNi_Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920656425</pqid></control><display><type>article</type><title>Different metal dopants effects on the structural, electronic, and optical properties of β-PbO: a density functional theory study</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Geldasa, Fikadu Takele ; Kebede, Mesfin Abayneh ; Shura, Megersa Wodajo ; Hone, Fekadu Gashaw</creator><creatorcontrib>Geldasa, Fikadu Takele ; Kebede, Mesfin Abayneh ; Shura, Megersa Wodajo ; Hone, Fekadu Gashaw</creatorcontrib><description>The β-PbO has low electrical conductivity relative to α-PbO which hinders its application in optoelectronics and other technological devices. The structural, electrical, and optical properties of Co 2+ , Ni 2+ , Cu 2+ , Li + , and Sn 2+ -doped β-PbO at the Pb site were investigated in this work using Quantum espresso as a DFT tool. The GGA and LDA exchange functionals were used for band structure calculations. The indirect band gap property is indicated by the calculation of electronic band structure, with spin up state band gap values of 2.28 eV, 0.68 eV, 1.01 eV, 1.57 eV, 1.79 eV, and 1.76 eV for pristine, Co 2+ , Ni 2+ , Cu 2+ , Li + , and Sn 2+ -doped β-PbO, respectively. The spin down states band gap of Co 2+ and Ni 2+ was 0.1 eV and 0.32 eV, whereas other dopants and pristine β-PbO equal with spin up states. The PDOS calculation shows how each orbital contributes to the formation of deep level valence band, shallow level valence band, and conduction band states. Dopant effects on optical properties such as JDOS, dielectric functions, refractive index, extinction coefficient, reflectivity, absorption coefficient, electron energy loss spectrum, and optical conductivity were thoroughly discussed. This research provides in-depth functional characteristics for guiding laboratory working experiments and the applications of these materials in various fields such as energy storage and solar cells.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-023-03718-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorptivity ; Applied and Technical Physics ; Approximation ; Atomic ; Band structure of solids ; Cobalt ; Complex Systems ; Condensed Matter Physics ; Conduction bands ; Convergence ; Copper ; Crystal structure ; Density functional theory ; Dopants ; Electrical resistivity ; Electron spin ; Energy ; Energy gap ; Energy loss ; Energy storage ; Investigations ; Lead oxides ; Mathematical analysis ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Optical properties ; Optoelectronics ; Photovoltaic cells ; Physics ; Physics and Astronomy ; Refractivity ; Regular Article ; Solar cells ; Solar energy ; Theoretical ; Tin ; Valence band</subject><ispartof>European physical journal plus, 2023-02, Vol.138 (2), p.165, Article 165</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-e1e487bd9d7b1fb8327e2e31471dde8fd5e4c8bb14d70cf073ddac602520adbe3</citedby><cites>FETCH-LOGICAL-c334t-e1e487bd9d7b1fb8327e2e31471dde8fd5e4c8bb14d70cf073ddac602520adbe3</cites><orcidid>0000-0002-2332-1750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-023-03718-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920656425?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Geldasa, Fikadu Takele</creatorcontrib><creatorcontrib>Kebede, Mesfin Abayneh</creatorcontrib><creatorcontrib>Shura, Megersa Wodajo</creatorcontrib><creatorcontrib>Hone, Fekadu Gashaw</creatorcontrib><title>Different metal dopants effects on the structural, electronic, and optical properties of β-PbO: a density functional theory study</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The β-PbO has low electrical conductivity relative to α-PbO which hinders its application in optoelectronics and other technological devices. The structural, electrical, and optical properties of Co 2+ , Ni 2+ , Cu 2+ , Li + , and Sn 2+ -doped β-PbO at the Pb site were investigated in this work using Quantum espresso as a DFT tool. The GGA and LDA exchange functionals were used for band structure calculations. The indirect band gap property is indicated by the calculation of electronic band structure, with spin up state band gap values of 2.28 eV, 0.68 eV, 1.01 eV, 1.57 eV, 1.79 eV, and 1.76 eV for pristine, Co 2+ , Ni 2+ , Cu 2+ , Li + , and Sn 2+ -doped β-PbO, respectively. The spin down states band gap of Co 2+ and Ni 2+ was 0.1 eV and 0.32 eV, whereas other dopants and pristine β-PbO equal with spin up states. The PDOS calculation shows how each orbital contributes to the formation of deep level valence band, shallow level valence band, and conduction band states. Dopant effects on optical properties such as JDOS, dielectric functions, refractive index, extinction coefficient, reflectivity, absorption coefficient, electron energy loss spectrum, and optical conductivity were thoroughly discussed. This research provides in-depth functional characteristics for guiding laboratory working experiments and the applications of these materials in various fields such as energy storage and solar cells.</description><subject>Absorptivity</subject><subject>Applied and Technical Physics</subject><subject>Approximation</subject><subject>Atomic</subject><subject>Band structure of solids</subject><subject>Cobalt</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Conduction bands</subject><subject>Convergence</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Density functional theory</subject><subject>Dopants</subject><subject>Electrical resistivity</subject><subject>Electron spin</subject><subject>Energy</subject><subject>Energy gap</subject><subject>Energy loss</subject><subject>Energy storage</subject><subject>Investigations</subject><subject>Lead oxides</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical properties</subject><subject>Optoelectronics</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Refractivity</subject><subject>Regular Article</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Theoretical</subject><subject>Tin</subject><subject>Valence band</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMtKAzEUhgdRsGifwYDbjs1tmhl3Uq9QqAtdh0xyolPaZEwyi259JB_EZzK1gu7M5oTk_34OX1GcEXxBCMdT6Ff9NBLGZrjElJWYCVKX4qAYUdLgsuKcH_65HxfjGFc4H94Q3vBR8X7dWQsBXEIbSGqNjO-VSxFBftZ5eofSK6CYwqDTENR6gmCdf4J3nZ4g5Qzyfep0Rvvgewipg0xZ9PlRPrbLS6SQARe7tEV2cDp13uVorvRhm1sHsz0tjqxaRxj_zJPi-fbmaX5fLpZ3D_OrRakZ46kEArwWrWmMaIlta0YFUGCEC2IM1NZUwHXdtoQbgbXFghmj9AzTimJlWmAnxfm-N-_5NkBMcuWHkLeJkjYUz6oZp1VOiX1KBx9jACv70G1U2EqC5c653DmXe-cyO5ffzqXIZL0nYybcC4Tf_v_QL9sNi_Y</recordid><startdate>20230220</startdate><enddate>20230220</enddate><creator>Geldasa, Fikadu Takele</creator><creator>Kebede, Mesfin Abayneh</creator><creator>Shura, Megersa Wodajo</creator><creator>Hone, Fekadu Gashaw</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-2332-1750</orcidid></search><sort><creationdate>20230220</creationdate><title>Different metal dopants effects on the structural, electronic, and optical properties of β-PbO: a density functional theory study</title><author>Geldasa, Fikadu Takele ; Kebede, Mesfin Abayneh ; Shura, Megersa Wodajo ; Hone, Fekadu Gashaw</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-e1e487bd9d7b1fb8327e2e31471dde8fd5e4c8bb14d70cf073ddac602520adbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorptivity</topic><topic>Applied and Technical Physics</topic><topic>Approximation</topic><topic>Atomic</topic><topic>Band structure of solids</topic><topic>Cobalt</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Conduction bands</topic><topic>Convergence</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Density functional theory</topic><topic>Dopants</topic><topic>Electrical resistivity</topic><topic>Electron spin</topic><topic>Energy</topic><topic>Energy gap</topic><topic>Energy loss</topic><topic>Energy storage</topic><topic>Investigations</topic><topic>Lead oxides</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical properties</topic><topic>Optoelectronics</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Refractivity</topic><topic>Regular Article</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Theoretical</topic><topic>Tin</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geldasa, Fikadu Takele</creatorcontrib><creatorcontrib>Kebede, Mesfin Abayneh</creatorcontrib><creatorcontrib>Shura, Megersa Wodajo</creatorcontrib><creatorcontrib>Hone, Fekadu Gashaw</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geldasa, Fikadu Takele</au><au>Kebede, Mesfin Abayneh</au><au>Shura, Megersa Wodajo</au><au>Hone, Fekadu Gashaw</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Different metal dopants effects on the structural, electronic, and optical properties of β-PbO: a density functional theory study</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2023-02-20</date><risdate>2023</risdate><volume>138</volume><issue>2</issue><spage>165</spage><pages>165-</pages><artnum>165</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The β-PbO has low electrical conductivity relative to α-PbO which hinders its application in optoelectronics and other technological devices. The structural, electrical, and optical properties of Co 2+ , Ni 2+ , Cu 2+ , Li + , and Sn 2+ -doped β-PbO at the Pb site were investigated in this work using Quantum espresso as a DFT tool. The GGA and LDA exchange functionals were used for band structure calculations. The indirect band gap property is indicated by the calculation of electronic band structure, with spin up state band gap values of 2.28 eV, 0.68 eV, 1.01 eV, 1.57 eV, 1.79 eV, and 1.76 eV for pristine, Co 2+ , Ni 2+ , Cu 2+ , Li + , and Sn 2+ -doped β-PbO, respectively. The spin down states band gap of Co 2+ and Ni 2+ was 0.1 eV and 0.32 eV, whereas other dopants and pristine β-PbO equal with spin up states. The PDOS calculation shows how each orbital contributes to the formation of deep level valence band, shallow level valence band, and conduction band states. Dopant effects on optical properties such as JDOS, dielectric functions, refractive index, extinction coefficient, reflectivity, absorption coefficient, electron energy loss spectrum, and optical conductivity were thoroughly discussed. This research provides in-depth functional characteristics for guiding laboratory working experiments and the applications of these materials in various fields such as energy storage and solar cells.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-023-03718-7</doi><orcidid>https://orcid.org/0000-0002-2332-1750</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2023-02, Vol.138 (2), p.165, Article 165
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2920656425
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Absorptivity
Applied and Technical Physics
Approximation
Atomic
Band structure of solids
Cobalt
Complex Systems
Condensed Matter Physics
Conduction bands
Convergence
Copper
Crystal structure
Density functional theory
Dopants
Electrical resistivity
Electron spin
Energy
Energy gap
Energy loss
Energy storage
Investigations
Lead oxides
Mathematical analysis
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Optical properties
Optoelectronics
Photovoltaic cells
Physics
Physics and Astronomy
Refractivity
Regular Article
Solar cells
Solar energy
Theoretical
Tin
Valence band
title Different metal dopants effects on the structural, electronic, and optical properties of β-PbO: a density functional theory study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Different%20metal%20dopants%20effects%20on%20the%20structural,%20electronic,%20and%20optical%20properties%20of%20%CE%B2-PbO:%20a%20density%20functional%20theory%20study&rft.jtitle=European%20physical%20journal%20plus&rft.au=Geldasa,%20Fikadu%20Takele&rft.date=2023-02-20&rft.volume=138&rft.issue=2&rft.spage=165&rft.pages=165-&rft.artnum=165&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-023-03718-7&rft_dat=%3Cproquest_cross%3E2920656425%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920656425&rft_id=info:pmid/&rfr_iscdi=true