Big data-driven optimization for sustainable reverse logistics network design
The reverse logistics network (RLN) design for sustainable supply chain management is a strategic decision in network configuration, and is higher influenced by uncertainty. This paper applies a bi-level stochastic multi-objective model to design an RLN for a disposable product recycling management...
Gespeichert in:
Veröffentlicht in: | Journal of ambient intelligence and humanized computing 2023-08, Vol.14 (8), p.10867-10882 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10882 |
---|---|
container_issue | 8 |
container_start_page | 10867 |
container_title | Journal of ambient intelligence and humanized computing |
container_volume | 14 |
creator | Khoei, Mohammad Amin Aria, Seyed Sina Gholizadeh, Hadi Goh, Mark Cheikhrouhou, Naoufel |
description | The reverse logistics network (RLN) design for sustainable supply chain management is a strategic decision in network configuration, and is higher influenced by uncertainty. This paper applies a bi-level stochastic multi-objective model to design an RLN for a disposable product recycling management system. The goal is to balance the overall network cost against the associated environmental risks. An LP-metric based sample average approximation is formulated to solve the optimization problem. The model is validated numerically through a disposable product firm. |
doi_str_mv | 10.1007/s12652-022-04357-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920627247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920627247</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278z-5af8750ecf6b9b069c9b8dde97f88692d0edb456c96bc847902bfe42f3d49c23</originalsourceid><addsrcrecordid>eNp9kEtLxDAQx4MouKz7BTwFPFeTtM3jqIsvULzsPaTJpGTdbdaku2I_vdWK3hwYZg7_B_wQOqfkkhIirjJlvGYFYeNWZS2K4QjNqOSyqGlVH__-pThFi5zXZJxSlZTSGXq-CS12pjeFS-EAHY67PmzDYPoQO-xjwnmfexM602wAJzhAyoA3sQ25DzbjDvr3mF6xgxza7gydeLPJsPi5c7S6u10tH4qnl_vH5fVTYZmQQ1EbL0VNwHreqIZwZVUjnQMlvJRcMUfANVXNreKNlZVQhDUeKuZLVynLyjm6mGJ3Kb7tIfd6HfepGxs1U4xwJlglRhWbVDbFnBN4vUtha9KHpkR_gdMTOD2C09_g9DCaysmUR3HXQvqL_sf1Cda1cnU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920627247</pqid></control><display><type>article</type><title>Big data-driven optimization for sustainable reverse logistics network design</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Khoei, Mohammad Amin ; Aria, Seyed Sina ; Gholizadeh, Hadi ; Goh, Mark ; Cheikhrouhou, Naoufel</creator><creatorcontrib>Khoei, Mohammad Amin ; Aria, Seyed Sina ; Gholizadeh, Hadi ; Goh, Mark ; Cheikhrouhou, Naoufel</creatorcontrib><description>The reverse logistics network (RLN) design for sustainable supply chain management is a strategic decision in network configuration, and is higher influenced by uncertainty. This paper applies a bi-level stochastic multi-objective model to design an RLN for a disposable product recycling management system. The goal is to balance the overall network cost against the associated environmental risks. An LP-metric based sample average approximation is formulated to solve the optimization problem. The model is validated numerically through a disposable product firm.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-022-04357-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Big Data ; Competitive advantage ; Computational Intelligence ; Cost control ; Decision making ; Design for recycling ; Electronics industry ; Engineering ; Environmental aspects ; Literature reviews ; Network design ; Optimization ; Original Research ; Product returns ; Profits ; Reverse logistics ; Robotics and Automation ; Stochastic models ; Supply chain management ; Supply chains ; Sustainability ; User Interfaces and Human Computer Interaction</subject><ispartof>Journal of ambient intelligence and humanized computing, 2023-08, Vol.14 (8), p.10867-10882</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c278z-5af8750ecf6b9b069c9b8dde97f88692d0edb456c96bc847902bfe42f3d49c23</citedby><cites>FETCH-LOGICAL-c278z-5af8750ecf6b9b069c9b8dde97f88692d0edb456c96bc847902bfe42f3d49c23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-022-04357-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920627247?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51297,64361,64365,72215</link.rule.ids></links><search><creatorcontrib>Khoei, Mohammad Amin</creatorcontrib><creatorcontrib>Aria, Seyed Sina</creatorcontrib><creatorcontrib>Gholizadeh, Hadi</creatorcontrib><creatorcontrib>Goh, Mark</creatorcontrib><creatorcontrib>Cheikhrouhou, Naoufel</creatorcontrib><title>Big data-driven optimization for sustainable reverse logistics network design</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>The reverse logistics network (RLN) design for sustainable supply chain management is a strategic decision in network configuration, and is higher influenced by uncertainty. This paper applies a bi-level stochastic multi-objective model to design an RLN for a disposable product recycling management system. The goal is to balance the overall network cost against the associated environmental risks. An LP-metric based sample average approximation is formulated to solve the optimization problem. The model is validated numerically through a disposable product firm.</description><subject>Artificial Intelligence</subject><subject>Big Data</subject><subject>Competitive advantage</subject><subject>Computational Intelligence</subject><subject>Cost control</subject><subject>Decision making</subject><subject>Design for recycling</subject><subject>Electronics industry</subject><subject>Engineering</subject><subject>Environmental aspects</subject><subject>Literature reviews</subject><subject>Network design</subject><subject>Optimization</subject><subject>Original Research</subject><subject>Product returns</subject><subject>Profits</subject><subject>Reverse logistics</subject><subject>Robotics and Automation</subject><subject>Stochastic models</subject><subject>Supply chain management</subject><subject>Supply chains</subject><subject>Sustainability</subject><subject>User Interfaces and Human Computer Interaction</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAQx4MouKz7BTwFPFeTtM3jqIsvULzsPaTJpGTdbdaku2I_vdWK3hwYZg7_B_wQOqfkkhIirjJlvGYFYeNWZS2K4QjNqOSyqGlVH__-pThFi5zXZJxSlZTSGXq-CS12pjeFS-EAHY67PmzDYPoQO-xjwnmfexM602wAJzhAyoA3sQ25DzbjDvr3mF6xgxza7gydeLPJsPi5c7S6u10tH4qnl_vH5fVTYZmQQ1EbL0VNwHreqIZwZVUjnQMlvJRcMUfANVXNreKNlZVQhDUeKuZLVynLyjm6mGJ3Kb7tIfd6HfepGxs1U4xwJlglRhWbVDbFnBN4vUtha9KHpkR_gdMTOD2C09_g9DCaysmUR3HXQvqL_sf1Cda1cnU</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Khoei, Mohammad Amin</creator><creator>Aria, Seyed Sina</creator><creator>Gholizadeh, Hadi</creator><creator>Goh, Mark</creator><creator>Cheikhrouhou, Naoufel</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230801</creationdate><title>Big data-driven optimization for sustainable reverse logistics network design</title><author>Khoei, Mohammad Amin ; Aria, Seyed Sina ; Gholizadeh, Hadi ; Goh, Mark ; Cheikhrouhou, Naoufel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278z-5af8750ecf6b9b069c9b8dde97f88692d0edb456c96bc847902bfe42f3d49c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Big Data</topic><topic>Competitive advantage</topic><topic>Computational Intelligence</topic><topic>Cost control</topic><topic>Decision making</topic><topic>Design for recycling</topic><topic>Electronics industry</topic><topic>Engineering</topic><topic>Environmental aspects</topic><topic>Literature reviews</topic><topic>Network design</topic><topic>Optimization</topic><topic>Original Research</topic><topic>Product returns</topic><topic>Profits</topic><topic>Reverse logistics</topic><topic>Robotics and Automation</topic><topic>Stochastic models</topic><topic>Supply chain management</topic><topic>Supply chains</topic><topic>Sustainability</topic><topic>User Interfaces and Human Computer Interaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khoei, Mohammad Amin</creatorcontrib><creatorcontrib>Aria, Seyed Sina</creatorcontrib><creatorcontrib>Gholizadeh, Hadi</creatorcontrib><creatorcontrib>Goh, Mark</creatorcontrib><creatorcontrib>Cheikhrouhou, Naoufel</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khoei, Mohammad Amin</au><au>Aria, Seyed Sina</au><au>Gholizadeh, Hadi</au><au>Goh, Mark</au><au>Cheikhrouhou, Naoufel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Big data-driven optimization for sustainable reverse logistics network design</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>14</volume><issue>8</issue><spage>10867</spage><epage>10882</epage><pages>10867-10882</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>The reverse logistics network (RLN) design for sustainable supply chain management is a strategic decision in network configuration, and is higher influenced by uncertainty. This paper applies a bi-level stochastic multi-objective model to design an RLN for a disposable product recycling management system. The goal is to balance the overall network cost against the associated environmental risks. An LP-metric based sample average approximation is formulated to solve the optimization problem. The model is validated numerically through a disposable product firm.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-022-04357-z</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-5137 |
ispartof | Journal of ambient intelligence and humanized computing, 2023-08, Vol.14 (8), p.10867-10882 |
issn | 1868-5137 1868-5145 |
language | eng |
recordid | cdi_proquest_journals_2920627247 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Artificial Intelligence Big Data Competitive advantage Computational Intelligence Cost control Decision making Design for recycling Electronics industry Engineering Environmental aspects Literature reviews Network design Optimization Original Research Product returns Profits Reverse logistics Robotics and Automation Stochastic models Supply chain management Supply chains Sustainability User Interfaces and Human Computer Interaction |
title | Big data-driven optimization for sustainable reverse logistics network design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A53%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Big%20data-driven%20optimization%20for%20sustainable%20reverse%20logistics%20network%20design&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Khoei,%20Mohammad%20Amin&rft.date=2023-08-01&rft.volume=14&rft.issue=8&rft.spage=10867&rft.epage=10882&rft.pages=10867-10882&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-022-04357-z&rft_dat=%3Cproquest_cross%3E2920627247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920627247&rft_id=info:pmid/&rfr_iscdi=true |