Non-probabilistic reliability-based multi-material topology optimization with stress constraint

This article aims to develop a novel approach to non-probabilistic reliability-based multi-material topology optimization with stress constraints to address the optimization design problem considering external loading uncertainties. To be specific, the ordered solid isotropic material with penalizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanics and materials in design 2024-02, Vol.20 (1), p.171-193
Hauptverfasser: Cheng, Feiteng, Zhao, Qinghai, Zhang, Liang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 193
container_issue 1
container_start_page 171
container_title International journal of mechanics and materials in design
container_volume 20
creator Cheng, Feiteng
Zhao, Qinghai
Zhang, Liang
description This article aims to develop a novel approach to non-probabilistic reliability-based multi-material topology optimization with stress constraints to address the optimization design problem considering external loading uncertainties. To be specific, the ordered solid isotropic material with penalization multi-material interpolation model is introduced into the non-probabilistic reliability-based topology optimization considering structural volume minimization under stress constraints, the multidimensional ellipsoidal model describes the non-probabilistic uncertainty. By utilizing the first-order reliability method, the failure probability can be estimated, and a non-probabilistic reliability index can be obtained. The global maximum stress is measured by adopting the normalized p -norm function method in combination with relaxation stress. The sensitivity analysis of the stress constraints is derived by the adjoint variable method, and the method of moving asymptote is employed to solve the design variables. Through several numerical examples, the effectiveness and feasibility of the presented method are verified to consider multi-material topology optimization with stress constraints in the absence of accurate probability distribution information of uncertain variables.
doi_str_mv 10.1007/s10999-023-09669-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920618945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920618945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-11280c1c5e786f4552e36210d05652351173de929a65feff45f1264238d3fa8f3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC52gm2WSToxT_gehFzyHdTWrK7mZNUqR-etNW8OZp3gy_N8M8hC6BXAMhzU0CopTChDJMlBAK0yM0A94wLGUNxztdhtAAO0VnKa0JYQSknCH9EkY8xbA0S9_7lH1bRdv7fZe3eGmS7aph02ePB5Nt9KavcphCH1bbKkzZD_7bZB_G6svnjyrlaFOq2jAWZfyYz9GJM32yF791jt7v794Wj_j59eFpcfuMWwYqYwAqSQstt40UruacWiYokI5wwSnjAA3rrKLKCO6sK4QDKmrKZMeckY7N0dVhb_nlc2NT1uuwiWM5qamiRIBUNS8UPVBtDClF6_QU_WDiVgPRuyD1IUhdgtT7IDUtJnYwpQKPKxv_Vv_j-gGKEnd-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920618945</pqid></control><display><type>article</type><title>Non-probabilistic reliability-based multi-material topology optimization with stress constraint</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cheng, Feiteng ; Zhao, Qinghai ; Zhang, Liang</creator><creatorcontrib>Cheng, Feiteng ; Zhao, Qinghai ; Zhang, Liang</creatorcontrib><description>This article aims to develop a novel approach to non-probabilistic reliability-based multi-material topology optimization with stress constraints to address the optimization design problem considering external loading uncertainties. To be specific, the ordered solid isotropic material with penalization multi-material interpolation model is introduced into the non-probabilistic reliability-based topology optimization considering structural volume minimization under stress constraints, the multidimensional ellipsoidal model describes the non-probabilistic uncertainty. By utilizing the first-order reliability method, the failure probability can be estimated, and a non-probabilistic reliability index can be obtained. The global maximum stress is measured by adopting the normalized p -norm function method in combination with relaxation stress. The sensitivity analysis of the stress constraints is derived by the adjoint variable method, and the method of moving asymptote is employed to solve the design variables. Through several numerical examples, the effectiveness and feasibility of the presented method are verified to consider multi-material topology optimization with stress constraints in the absence of accurate probability distribution information of uncertain variables.</description><identifier>ISSN: 1569-1713</identifier><identifier>EISSN: 1573-8841</identifier><identifier>DOI: 10.1007/s10999-023-09669-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Asymptotes ; Characterization and Evaluation of Materials ; Classical Mechanics ; Constraint modelling ; Design optimization ; Engineering ; Engineering Design ; Interpolation ; Isotropic material ; Optimization ; Reliability ; Sensitivity analysis ; Solid Mechanics ; Statistical analysis ; Stress relaxation ; Topology optimization ; Uncertainty</subject><ispartof>International journal of mechanics and materials in design, 2024-02, Vol.20 (1), p.171-193</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-11280c1c5e786f4552e36210d05652351173de929a65feff45f1264238d3fa8f3</citedby><cites>FETCH-LOGICAL-c319t-11280c1c5e786f4552e36210d05652351173de929a65feff45f1264238d3fa8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10999-023-09669-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10999-023-09669-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cheng, Feiteng</creatorcontrib><creatorcontrib>Zhao, Qinghai</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><title>Non-probabilistic reliability-based multi-material topology optimization with stress constraint</title><title>International journal of mechanics and materials in design</title><addtitle>Int J Mech Mater Des</addtitle><description>This article aims to develop a novel approach to non-probabilistic reliability-based multi-material topology optimization with stress constraints to address the optimization design problem considering external loading uncertainties. To be specific, the ordered solid isotropic material with penalization multi-material interpolation model is introduced into the non-probabilistic reliability-based topology optimization considering structural volume minimization under stress constraints, the multidimensional ellipsoidal model describes the non-probabilistic uncertainty. By utilizing the first-order reliability method, the failure probability can be estimated, and a non-probabilistic reliability index can be obtained. The global maximum stress is measured by adopting the normalized p -norm function method in combination with relaxation stress. The sensitivity analysis of the stress constraints is derived by the adjoint variable method, and the method of moving asymptote is employed to solve the design variables. Through several numerical examples, the effectiveness and feasibility of the presented method are verified to consider multi-material topology optimization with stress constraints in the absence of accurate probability distribution information of uncertain variables.</description><subject>Asymptotes</subject><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Constraint modelling</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Interpolation</subject><subject>Isotropic material</subject><subject>Optimization</subject><subject>Reliability</subject><subject>Sensitivity analysis</subject><subject>Solid Mechanics</subject><subject>Statistical analysis</subject><subject>Stress relaxation</subject><subject>Topology optimization</subject><subject>Uncertainty</subject><issn>1569-1713</issn><issn>1573-8841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC52gm2WSToxT_gehFzyHdTWrK7mZNUqR-etNW8OZp3gy_N8M8hC6BXAMhzU0CopTChDJMlBAK0yM0A94wLGUNxztdhtAAO0VnKa0JYQSknCH9EkY8xbA0S9_7lH1bRdv7fZe3eGmS7aph02ePB5Nt9KavcphCH1bbKkzZD_7bZB_G6svnjyrlaFOq2jAWZfyYz9GJM32yF791jt7v794Wj_j59eFpcfuMWwYqYwAqSQstt40UruacWiYokI5wwSnjAA3rrKLKCO6sK4QDKmrKZMeckY7N0dVhb_nlc2NT1uuwiWM5qamiRIBUNS8UPVBtDClF6_QU_WDiVgPRuyD1IUhdgtT7IDUtJnYwpQKPKxv_Vv_j-gGKEnd-</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Cheng, Feiteng</creator><creator>Zhao, Qinghai</creator><creator>Zhang, Liang</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Non-probabilistic reliability-based multi-material topology optimization with stress constraint</title><author>Cheng, Feiteng ; Zhao, Qinghai ; Zhang, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-11280c1c5e786f4552e36210d05652351173de929a65feff45f1264238d3fa8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotes</topic><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Constraint modelling</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Interpolation</topic><topic>Isotropic material</topic><topic>Optimization</topic><topic>Reliability</topic><topic>Sensitivity analysis</topic><topic>Solid Mechanics</topic><topic>Statistical analysis</topic><topic>Stress relaxation</topic><topic>Topology optimization</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Feiteng</creatorcontrib><creatorcontrib>Zhao, Qinghai</creatorcontrib><creatorcontrib>Zhang, Liang</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of mechanics and materials in design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Feiteng</au><au>Zhao, Qinghai</au><au>Zhang, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-probabilistic reliability-based multi-material topology optimization with stress constraint</atitle><jtitle>International journal of mechanics and materials in design</jtitle><stitle>Int J Mech Mater Des</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>20</volume><issue>1</issue><spage>171</spage><epage>193</epage><pages>171-193</pages><issn>1569-1713</issn><eissn>1573-8841</eissn><abstract>This article aims to develop a novel approach to non-probabilistic reliability-based multi-material topology optimization with stress constraints to address the optimization design problem considering external loading uncertainties. To be specific, the ordered solid isotropic material with penalization multi-material interpolation model is introduced into the non-probabilistic reliability-based topology optimization considering structural volume minimization under stress constraints, the multidimensional ellipsoidal model describes the non-probabilistic uncertainty. By utilizing the first-order reliability method, the failure probability can be estimated, and a non-probabilistic reliability index can be obtained. The global maximum stress is measured by adopting the normalized p -norm function method in combination with relaxation stress. The sensitivity analysis of the stress constraints is derived by the adjoint variable method, and the method of moving asymptote is employed to solve the design variables. Through several numerical examples, the effectiveness and feasibility of the presented method are verified to consider multi-material topology optimization with stress constraints in the absence of accurate probability distribution information of uncertain variables.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10999-023-09669-2</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-1713
ispartof International journal of mechanics and materials in design, 2024-02, Vol.20 (1), p.171-193
issn 1569-1713
1573-8841
language eng
recordid cdi_proquest_journals_2920618945
source SpringerLink Journals - AutoHoldings
subjects Asymptotes
Characterization and Evaluation of Materials
Classical Mechanics
Constraint modelling
Design optimization
Engineering
Engineering Design
Interpolation
Isotropic material
Optimization
Reliability
Sensitivity analysis
Solid Mechanics
Statistical analysis
Stress relaxation
Topology optimization
Uncertainty
title Non-probabilistic reliability-based multi-material topology optimization with stress constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-probabilistic%20reliability-based%20multi-material%20topology%20optimization%20with%20stress%20constraint&rft.jtitle=International%20journal%20of%20mechanics%20and%20materials%20in%20design&rft.au=Cheng,%20Feiteng&rft.date=2024-02-01&rft.volume=20&rft.issue=1&rft.spage=171&rft.epage=193&rft.pages=171-193&rft.issn=1569-1713&rft.eissn=1573-8841&rft_id=info:doi/10.1007/s10999-023-09669-2&rft_dat=%3Cproquest_cross%3E2920618945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920618945&rft_id=info:pmid/&rfr_iscdi=true