Enhancing defective region visualization in industrial products using Grad-CAM and random masking data augmentation

Defect detection in various industrial products ensures product quality and safety. This paper introduces an innovative design, training, and evaluation application employing CNN, CAE, YOLO, FCN, and SVM models, to facilitate defect detection without requiring extensive IT expertise. However, conven...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial life and robotics 2024-02, Vol.29 (1), p.62-69
Hauptverfasser: Shimizu, Tatsuki, Nagata, Fusaomi, Arima, Koki, Miki, Kohei, Kato, Hirohisa, Otsuka, Akimasa, Watanabe, Keigo, Habib, Maki K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 1
container_start_page 62
container_title Artificial life and robotics
container_volume 29
creator Shimizu, Tatsuki
Nagata, Fusaomi
Arima, Koki
Miki, Kohei
Kato, Hirohisa
Otsuka, Akimasa
Watanabe, Keigo
Habib, Maki K.
description Defect detection in various industrial products ensures product quality and safety. This paper introduces an innovative design, training, and evaluation application employing CNN, CAE, YOLO, FCN, and SVM models, to facilitate defect detection without requiring extensive IT expertise. However, conventional usage of Grad-CAM for visualizing defect regions sometimes includes irrelevant areas unrelated to the target defects. A novel data augmentation technique called random masking is proposed to enhance the visualization of defective regions, leading to more accurate and focused defect detection in various industrial products. This technique is used during training, replacing non-target areas in each image with randomly generated mask patterns. The efficacy of the proposed technique is demonstrated through visualization tests of defective regions using Grad-CAM. Furthermore, an ablation study is conducted to assess the effectiveness of the data augmentation techniques, comparing the performance of Grad-CAM with and without random masking augmentation. We further provide insights into the dataset used and present noteworthy findings from the evaluation, showcasing the contributions of our work in advancing defect detection methodologies.
doi_str_mv 10.1007/s10015-023-00913-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920616689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920616689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1ba698c49b2d124565c53fde7df06a7e559a39a637530e5bf68a6e151ceb7b213</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8R_PRpO1xWdZVULzoOUybtGbdpmvSLuivN90VvAnDfMB7b2YeQteM3jJK87uYMpOEckEoLZkgxQmaMcUykmdSnaY-E4JIXhbn6CLGDaVZTpWYobjy7-Br51tsbGPrwe0tDrZ1vcd7F0fYum8YpslNYcY4BAdbvAu9Gesh4jFO3HUAQ5aLZwze4JBS3-EO4sdBFwbAMLad9cNB6hKdNbCN9uq3ztHb_ep1-UCeXtaPy8UTqXlOB8IqUGVRZ2XFDePpDVlL0Ribm4YqyK2UJYgSlMiloFZWjSpAWSZZbau84kzM0c1RNx37Odo46E0_Bp9Wal5yqphSRZlQ_IiqQx9jsI3eBddB-NKM6slcfTRXJ3P1wVxdJJI4kmIC-9aGP-l_WD8MtH5d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920616689</pqid></control><display><type>article</type><title>Enhancing defective region visualization in industrial products using Grad-CAM and random masking data augmentation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shimizu, Tatsuki ; Nagata, Fusaomi ; Arima, Koki ; Miki, Kohei ; Kato, Hirohisa ; Otsuka, Akimasa ; Watanabe, Keigo ; Habib, Maki K.</creator><creatorcontrib>Shimizu, Tatsuki ; Nagata, Fusaomi ; Arima, Koki ; Miki, Kohei ; Kato, Hirohisa ; Otsuka, Akimasa ; Watanabe, Keigo ; Habib, Maki K.</creatorcontrib><description>Defect detection in various industrial products ensures product quality and safety. This paper introduces an innovative design, training, and evaluation application employing CNN, CAE, YOLO, FCN, and SVM models, to facilitate defect detection without requiring extensive IT expertise. However, conventional usage of Grad-CAM for visualizing defect regions sometimes includes irrelevant areas unrelated to the target defects. A novel data augmentation technique called random masking is proposed to enhance the visualization of defective regions, leading to more accurate and focused defect detection in various industrial products. This technique is used during training, replacing non-target areas in each image with randomly generated mask patterns. The efficacy of the proposed technique is demonstrated through visualization tests of defective regions using Grad-CAM. Furthermore, an ablation study is conducted to assess the effectiveness of the data augmentation techniques, comparing the performance of Grad-CAM with and without random masking augmentation. We further provide insights into the dataset used and present noteworthy findings from the evaluation, showcasing the contributions of our work in advancing defect detection methodologies.</description><identifier>ISSN: 1433-5298</identifier><identifier>EISSN: 1614-7456</identifier><identifier>DOI: 10.1007/s10015-023-00913-8</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Ablation ; Artificial Intelligence ; Computation by Abstract Devices ; Computer Science ; Control ; Data augmentation ; Defects ; Masking ; Mechatronics ; Original Article ; Product safety ; Robotics ; Training ; Visualization</subject><ispartof>Artificial life and robotics, 2024-02, Vol.29 (1), p.62-69</ispartof><rights>International Society of Artificial Life and Robotics (ISAROB) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1ba698c49b2d124565c53fde7df06a7e559a39a637530e5bf68a6e151ceb7b213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10015-023-00913-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10015-023-00913-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shimizu, Tatsuki</creatorcontrib><creatorcontrib>Nagata, Fusaomi</creatorcontrib><creatorcontrib>Arima, Koki</creatorcontrib><creatorcontrib>Miki, Kohei</creatorcontrib><creatorcontrib>Kato, Hirohisa</creatorcontrib><creatorcontrib>Otsuka, Akimasa</creatorcontrib><creatorcontrib>Watanabe, Keigo</creatorcontrib><creatorcontrib>Habib, Maki K.</creatorcontrib><title>Enhancing defective region visualization in industrial products using Grad-CAM and random masking data augmentation</title><title>Artificial life and robotics</title><addtitle>Artif Life Robotics</addtitle><description>Defect detection in various industrial products ensures product quality and safety. This paper introduces an innovative design, training, and evaluation application employing CNN, CAE, YOLO, FCN, and SVM models, to facilitate defect detection without requiring extensive IT expertise. However, conventional usage of Grad-CAM for visualizing defect regions sometimes includes irrelevant areas unrelated to the target defects. A novel data augmentation technique called random masking is proposed to enhance the visualization of defective regions, leading to more accurate and focused defect detection in various industrial products. This technique is used during training, replacing non-target areas in each image with randomly generated mask patterns. The efficacy of the proposed technique is demonstrated through visualization tests of defective regions using Grad-CAM. Furthermore, an ablation study is conducted to assess the effectiveness of the data augmentation techniques, comparing the performance of Grad-CAM with and without random masking augmentation. We further provide insights into the dataset used and present noteworthy findings from the evaluation, showcasing the contributions of our work in advancing defect detection methodologies.</description><subject>Ablation</subject><subject>Artificial Intelligence</subject><subject>Computation by Abstract Devices</subject><subject>Computer Science</subject><subject>Control</subject><subject>Data augmentation</subject><subject>Defects</subject><subject>Masking</subject><subject>Mechatronics</subject><subject>Original Article</subject><subject>Product safety</subject><subject>Robotics</subject><subject>Training</subject><subject>Visualization</subject><issn>1433-5298</issn><issn>1614-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoHPAU8R_PRpO1xWdZVULzoOUybtGbdpmvSLuivN90VvAnDfMB7b2YeQteM3jJK87uYMpOEckEoLZkgxQmaMcUykmdSnaY-E4JIXhbn6CLGDaVZTpWYobjy7-Br51tsbGPrwe0tDrZ1vcd7F0fYum8YpslNYcY4BAdbvAu9Gesh4jFO3HUAQ5aLZwze4JBS3-EO4sdBFwbAMLad9cNB6hKdNbCN9uq3ztHb_ep1-UCeXtaPy8UTqXlOB8IqUGVRZ2XFDePpDVlL0Ribm4YqyK2UJYgSlMiloFZWjSpAWSZZbau84kzM0c1RNx37Odo46E0_Bp9Wal5yqphSRZlQ_IiqQx9jsI3eBddB-NKM6slcfTRXJ3P1wVxdJJI4kmIC-9aGP-l_WD8MtH5d</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Shimizu, Tatsuki</creator><creator>Nagata, Fusaomi</creator><creator>Arima, Koki</creator><creator>Miki, Kohei</creator><creator>Kato, Hirohisa</creator><creator>Otsuka, Akimasa</creator><creator>Watanabe, Keigo</creator><creator>Habib, Maki K.</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Enhancing defective region visualization in industrial products using Grad-CAM and random masking data augmentation</title><author>Shimizu, Tatsuki ; Nagata, Fusaomi ; Arima, Koki ; Miki, Kohei ; Kato, Hirohisa ; Otsuka, Akimasa ; Watanabe, Keigo ; Habib, Maki K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1ba698c49b2d124565c53fde7df06a7e559a39a637530e5bf68a6e151ceb7b213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Artificial Intelligence</topic><topic>Computation by Abstract Devices</topic><topic>Computer Science</topic><topic>Control</topic><topic>Data augmentation</topic><topic>Defects</topic><topic>Masking</topic><topic>Mechatronics</topic><topic>Original Article</topic><topic>Product safety</topic><topic>Robotics</topic><topic>Training</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimizu, Tatsuki</creatorcontrib><creatorcontrib>Nagata, Fusaomi</creatorcontrib><creatorcontrib>Arima, Koki</creatorcontrib><creatorcontrib>Miki, Kohei</creatorcontrib><creatorcontrib>Kato, Hirohisa</creatorcontrib><creatorcontrib>Otsuka, Akimasa</creatorcontrib><creatorcontrib>Watanabe, Keigo</creatorcontrib><creatorcontrib>Habib, Maki K.</creatorcontrib><collection>CrossRef</collection><jtitle>Artificial life and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimizu, Tatsuki</au><au>Nagata, Fusaomi</au><au>Arima, Koki</au><au>Miki, Kohei</au><au>Kato, Hirohisa</au><au>Otsuka, Akimasa</au><au>Watanabe, Keigo</au><au>Habib, Maki K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing defective region visualization in industrial products using Grad-CAM and random masking data augmentation</atitle><jtitle>Artificial life and robotics</jtitle><stitle>Artif Life Robotics</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>29</volume><issue>1</issue><spage>62</spage><epage>69</epage><pages>62-69</pages><issn>1433-5298</issn><eissn>1614-7456</eissn><abstract>Defect detection in various industrial products ensures product quality and safety. This paper introduces an innovative design, training, and evaluation application employing CNN, CAE, YOLO, FCN, and SVM models, to facilitate defect detection without requiring extensive IT expertise. However, conventional usage of Grad-CAM for visualizing defect regions sometimes includes irrelevant areas unrelated to the target defects. A novel data augmentation technique called random masking is proposed to enhance the visualization of defective regions, leading to more accurate and focused defect detection in various industrial products. This technique is used during training, replacing non-target areas in each image with randomly generated mask patterns. The efficacy of the proposed technique is demonstrated through visualization tests of defective regions using Grad-CAM. Furthermore, an ablation study is conducted to assess the effectiveness of the data augmentation techniques, comparing the performance of Grad-CAM with and without random masking augmentation. We further provide insights into the dataset used and present noteworthy findings from the evaluation, showcasing the contributions of our work in advancing defect detection methodologies.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10015-023-00913-8</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1433-5298
ispartof Artificial life and robotics, 2024-02, Vol.29 (1), p.62-69
issn 1433-5298
1614-7456
language eng
recordid cdi_proquest_journals_2920616689
source SpringerLink Journals - AutoHoldings
subjects Ablation
Artificial Intelligence
Computation by Abstract Devices
Computer Science
Control
Data augmentation
Defects
Masking
Mechatronics
Original Article
Product safety
Robotics
Training
Visualization
title Enhancing defective region visualization in industrial products using Grad-CAM and random masking data augmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20defective%20region%20visualization%20in%20industrial%20products%20using%20Grad-CAM%20and%20random%20masking%20data%20augmentation&rft.jtitle=Artificial%20life%20and%20robotics&rft.au=Shimizu,%20Tatsuki&rft.date=2024-02-01&rft.volume=29&rft.issue=1&rft.spage=62&rft.epage=69&rft.pages=62-69&rft.issn=1433-5298&rft.eissn=1614-7456&rft_id=info:doi/10.1007/s10015-023-00913-8&rft_dat=%3Cproquest_cross%3E2920616689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920616689&rft_id=info:pmid/&rfr_iscdi=true