Enhancing defective region visualization in industrial products using Grad-CAM and random masking data augmentation
Defect detection in various industrial products ensures product quality and safety. This paper introduces an innovative design, training, and evaluation application employing CNN, CAE, YOLO, FCN, and SVM models, to facilitate defect detection without requiring extensive IT expertise. However, conven...
Gespeichert in:
Veröffentlicht in: | Artificial life and robotics 2024-02, Vol.29 (1), p.62-69 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 69 |
---|---|
container_issue | 1 |
container_start_page | 62 |
container_title | Artificial life and robotics |
container_volume | 29 |
creator | Shimizu, Tatsuki Nagata, Fusaomi Arima, Koki Miki, Kohei Kato, Hirohisa Otsuka, Akimasa Watanabe, Keigo Habib, Maki K. |
description | Defect detection in various industrial products ensures product quality and safety. This paper introduces an innovative design, training, and evaluation application employing CNN, CAE, YOLO, FCN, and SVM models, to facilitate defect detection without requiring extensive IT expertise. However, conventional usage of Grad-CAM for visualizing defect regions sometimes includes irrelevant areas unrelated to the target defects. A novel data augmentation technique called random masking is proposed to enhance the visualization of defective regions, leading to more accurate and focused defect detection in various industrial products. This technique is used during training, replacing non-target areas in each image with randomly generated mask patterns. The efficacy of the proposed technique is demonstrated through visualization tests of defective regions using Grad-CAM. Furthermore, an ablation study is conducted to assess the effectiveness of the data augmentation techniques, comparing the performance of Grad-CAM with and without random masking augmentation. We further provide insights into the dataset used and present noteworthy findings from the evaluation, showcasing the contributions of our work in advancing defect detection methodologies. |
doi_str_mv | 10.1007/s10015-023-00913-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920616689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920616689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-1ba698c49b2d124565c53fde7df06a7e559a39a637530e5bf68a6e151ceb7b213</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoHPAU8R_PRpO1xWdZVULzoOUybtGbdpmvSLuivN90VvAnDfMB7b2YeQteM3jJK87uYMpOEckEoLZkgxQmaMcUykmdSnaY-E4JIXhbn6CLGDaVZTpWYobjy7-Br51tsbGPrwe0tDrZ1vcd7F0fYum8YpslNYcY4BAdbvAu9Gesh4jFO3HUAQ5aLZwze4JBS3-EO4sdBFwbAMLad9cNB6hKdNbCN9uq3ztHb_ep1-UCeXtaPy8UTqXlOB8IqUGVRZ2XFDePpDVlL0Ribm4YqyK2UJYgSlMiloFZWjSpAWSZZbau84kzM0c1RNx37Odo46E0_Bp9Wal5yqphSRZlQ_IiqQx9jsI3eBddB-NKM6slcfTRXJ3P1wVxdJJI4kmIC-9aGP-l_WD8MtH5d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920616689</pqid></control><display><type>article</type><title>Enhancing defective region visualization in industrial products using Grad-CAM and random masking data augmentation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shimizu, Tatsuki ; Nagata, Fusaomi ; Arima, Koki ; Miki, Kohei ; Kato, Hirohisa ; Otsuka, Akimasa ; Watanabe, Keigo ; Habib, Maki K.</creator><creatorcontrib>Shimizu, Tatsuki ; Nagata, Fusaomi ; Arima, Koki ; Miki, Kohei ; Kato, Hirohisa ; Otsuka, Akimasa ; Watanabe, Keigo ; Habib, Maki K.</creatorcontrib><description>Defect detection in various industrial products ensures product quality and safety. This paper introduces an innovative design, training, and evaluation application employing CNN, CAE, YOLO, FCN, and SVM models, to facilitate defect detection without requiring extensive IT expertise. However, conventional usage of Grad-CAM for visualizing defect regions sometimes includes irrelevant areas unrelated to the target defects. A novel data augmentation technique called random masking is proposed to enhance the visualization of defective regions, leading to more accurate and focused defect detection in various industrial products. This technique is used during training, replacing non-target areas in each image with randomly generated mask patterns. The efficacy of the proposed technique is demonstrated through visualization tests of defective regions using Grad-CAM. Furthermore, an ablation study is conducted to assess the effectiveness of the data augmentation techniques, comparing the performance of Grad-CAM with and without random masking augmentation. We further provide insights into the dataset used and present noteworthy findings from the evaluation, showcasing the contributions of our work in advancing defect detection methodologies.</description><identifier>ISSN: 1433-5298</identifier><identifier>EISSN: 1614-7456</identifier><identifier>DOI: 10.1007/s10015-023-00913-8</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Ablation ; Artificial Intelligence ; Computation by Abstract Devices ; Computer Science ; Control ; Data augmentation ; Defects ; Masking ; Mechatronics ; Original Article ; Product safety ; Robotics ; Training ; Visualization</subject><ispartof>Artificial life and robotics, 2024-02, Vol.29 (1), p.62-69</ispartof><rights>International Society of Artificial Life and Robotics (ISAROB) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-1ba698c49b2d124565c53fde7df06a7e559a39a637530e5bf68a6e151ceb7b213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10015-023-00913-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10015-023-00913-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shimizu, Tatsuki</creatorcontrib><creatorcontrib>Nagata, Fusaomi</creatorcontrib><creatorcontrib>Arima, Koki</creatorcontrib><creatorcontrib>Miki, Kohei</creatorcontrib><creatorcontrib>Kato, Hirohisa</creatorcontrib><creatorcontrib>Otsuka, Akimasa</creatorcontrib><creatorcontrib>Watanabe, Keigo</creatorcontrib><creatorcontrib>Habib, Maki K.</creatorcontrib><title>Enhancing defective region visualization in industrial products using Grad-CAM and random masking data augmentation</title><title>Artificial life and robotics</title><addtitle>Artif Life Robotics</addtitle><description>Defect detection in various industrial products ensures product quality and safety. This paper introduces an innovative design, training, and evaluation application employing CNN, CAE, YOLO, FCN, and SVM models, to facilitate defect detection without requiring extensive IT expertise. However, conventional usage of Grad-CAM for visualizing defect regions sometimes includes irrelevant areas unrelated to the target defects. A novel data augmentation technique called random masking is proposed to enhance the visualization of defective regions, leading to more accurate and focused defect detection in various industrial products. This technique is used during training, replacing non-target areas in each image with randomly generated mask patterns. The efficacy of the proposed technique is demonstrated through visualization tests of defective regions using Grad-CAM. Furthermore, an ablation study is conducted to assess the effectiveness of the data augmentation techniques, comparing the performance of Grad-CAM with and without random masking augmentation. We further provide insights into the dataset used and present noteworthy findings from the evaluation, showcasing the contributions of our work in advancing defect detection methodologies.</description><subject>Ablation</subject><subject>Artificial Intelligence</subject><subject>Computation by Abstract Devices</subject><subject>Computer Science</subject><subject>Control</subject><subject>Data augmentation</subject><subject>Defects</subject><subject>Masking</subject><subject>Mechatronics</subject><subject>Original Article</subject><subject>Product safety</subject><subject>Robotics</subject><subject>Training</subject><subject>Visualization</subject><issn>1433-5298</issn><issn>1614-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoHPAU8R_PRpO1xWdZVULzoOUybtGbdpmvSLuivN90VvAnDfMB7b2YeQteM3jJK87uYMpOEckEoLZkgxQmaMcUykmdSnaY-E4JIXhbn6CLGDaVZTpWYobjy7-Br51tsbGPrwe0tDrZ1vcd7F0fYum8YpslNYcY4BAdbvAu9Gesh4jFO3HUAQ5aLZwze4JBS3-EO4sdBFwbAMLad9cNB6hKdNbCN9uq3ztHb_ep1-UCeXtaPy8UTqXlOB8IqUGVRZ2XFDePpDVlL0Ribm4YqyK2UJYgSlMiloFZWjSpAWSZZbau84kzM0c1RNx37Odo46E0_Bp9Wal5yqphSRZlQ_IiqQx9jsI3eBddB-NKM6slcfTRXJ3P1wVxdJJI4kmIC-9aGP-l_WD8MtH5d</recordid><startdate>20240201</startdate><enddate>20240201</enddate><creator>Shimizu, Tatsuki</creator><creator>Nagata, Fusaomi</creator><creator>Arima, Koki</creator><creator>Miki, Kohei</creator><creator>Kato, Hirohisa</creator><creator>Otsuka, Akimasa</creator><creator>Watanabe, Keigo</creator><creator>Habib, Maki K.</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240201</creationdate><title>Enhancing defective region visualization in industrial products using Grad-CAM and random masking data augmentation</title><author>Shimizu, Tatsuki ; Nagata, Fusaomi ; Arima, Koki ; Miki, Kohei ; Kato, Hirohisa ; Otsuka, Akimasa ; Watanabe, Keigo ; Habib, Maki K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-1ba698c49b2d124565c53fde7df06a7e559a39a637530e5bf68a6e151ceb7b213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ablation</topic><topic>Artificial Intelligence</topic><topic>Computation by Abstract Devices</topic><topic>Computer Science</topic><topic>Control</topic><topic>Data augmentation</topic><topic>Defects</topic><topic>Masking</topic><topic>Mechatronics</topic><topic>Original Article</topic><topic>Product safety</topic><topic>Robotics</topic><topic>Training</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimizu, Tatsuki</creatorcontrib><creatorcontrib>Nagata, Fusaomi</creatorcontrib><creatorcontrib>Arima, Koki</creatorcontrib><creatorcontrib>Miki, Kohei</creatorcontrib><creatorcontrib>Kato, Hirohisa</creatorcontrib><creatorcontrib>Otsuka, Akimasa</creatorcontrib><creatorcontrib>Watanabe, Keigo</creatorcontrib><creatorcontrib>Habib, Maki K.</creatorcontrib><collection>CrossRef</collection><jtitle>Artificial life and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimizu, Tatsuki</au><au>Nagata, Fusaomi</au><au>Arima, Koki</au><au>Miki, Kohei</au><au>Kato, Hirohisa</au><au>Otsuka, Akimasa</au><au>Watanabe, Keigo</au><au>Habib, Maki K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing defective region visualization in industrial products using Grad-CAM and random masking data augmentation</atitle><jtitle>Artificial life and robotics</jtitle><stitle>Artif Life Robotics</stitle><date>2024-02-01</date><risdate>2024</risdate><volume>29</volume><issue>1</issue><spage>62</spage><epage>69</epage><pages>62-69</pages><issn>1433-5298</issn><eissn>1614-7456</eissn><abstract>Defect detection in various industrial products ensures product quality and safety. This paper introduces an innovative design, training, and evaluation application employing CNN, CAE, YOLO, FCN, and SVM models, to facilitate defect detection without requiring extensive IT expertise. However, conventional usage of Grad-CAM for visualizing defect regions sometimes includes irrelevant areas unrelated to the target defects. A novel data augmentation technique called random masking is proposed to enhance the visualization of defective regions, leading to more accurate and focused defect detection in various industrial products. This technique is used during training, replacing non-target areas in each image with randomly generated mask patterns. The efficacy of the proposed technique is demonstrated through visualization tests of defective regions using Grad-CAM. Furthermore, an ablation study is conducted to assess the effectiveness of the data augmentation techniques, comparing the performance of Grad-CAM with and without random masking augmentation. We further provide insights into the dataset used and present noteworthy findings from the evaluation, showcasing the contributions of our work in advancing defect detection methodologies.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10015-023-00913-8</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-5298 |
ispartof | Artificial life and robotics, 2024-02, Vol.29 (1), p.62-69 |
issn | 1433-5298 1614-7456 |
language | eng |
recordid | cdi_proquest_journals_2920616689 |
source | SpringerLink Journals - AutoHoldings |
subjects | Ablation Artificial Intelligence Computation by Abstract Devices Computer Science Control Data augmentation Defects Masking Mechatronics Original Article Product safety Robotics Training Visualization |
title | Enhancing defective region visualization in industrial products using Grad-CAM and random masking data augmentation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20defective%20region%20visualization%20in%20industrial%20products%20using%20Grad-CAM%20and%20random%20masking%20data%20augmentation&rft.jtitle=Artificial%20life%20and%20robotics&rft.au=Shimizu,%20Tatsuki&rft.date=2024-02-01&rft.volume=29&rft.issue=1&rft.spage=62&rft.epage=69&rft.pages=62-69&rft.issn=1433-5298&rft.eissn=1614-7456&rft_id=info:doi/10.1007/s10015-023-00913-8&rft_dat=%3Cproquest_cross%3E2920616689%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920616689&rft_id=info:pmid/&rfr_iscdi=true |