Sensitivity analysis on enhanced thermal transport in Eyring–Powell nanofluid flow: investigating over a radiating convective Riga plate with non-uniform heat source/sink under flux conditions

The structural presentation of the current article based on the comprehensive sensitivity analysis on the enhanced thermal transport in Eyring–Powell nanofluid flow towards a radiating permeable convective Riga plate embedding in a permeable medium. Further, inclusion of non-uniform heat source/sink...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2024, Vol.149 (2), p.711-728
Hauptverfasser: Mishra, S. R., Baag, S., Pattnaik, P. K., Panda, Subhajit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 728
container_issue 2
container_start_page 711
container_title Journal of thermal analysis and calorimetry
container_volume 149
creator Mishra, S. R.
Baag, S.
Pattnaik, P. K.
Panda, Subhajit
description The structural presentation of the current article based on the comprehensive sensitivity analysis on the enhanced thermal transport in Eyring–Powell nanofluid flow towards a radiating permeable convective Riga plate embedding in a permeable medium. Further, inclusion of non-uniform heat source/sink under the action of flux conditions enriches the study. A statistical approach, coupled with response surface methodology, is employed to investigate the intricate relationship between various parameters and their influence on the rate of heat transfer. The study focuses on the effects of nanoparticle concentration, temperature difference, convective heat transfer coefficient, and radiative heat production/absorption distribution on the thermal characteristics of the nanofluid flow. Computational simulations are performed to obtain numerical solutions employing Runge–Kutta–Fehlberg technique for the transformed governing equations, and sensitivity analysis is conducted to quantify the impact of input parameters on the desired output variables. The results demonstrate the significant role played by each parameter in determining the overall thermal behavior of the system. The sensitivity analysis provides valuable insights into the optimization and control of heat transfer rate in Eyring–Powell nanofluid flows, enabling the design of more efficient heat transfer systems.
doi_str_mv 10.1007/s10973-023-12719-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2920613421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A781131058</galeid><sourcerecordid>A781131058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-208f5dbb025eb8903d9619bba67e6970ac39c766ea8e1b07f5fd13058963287c3</originalsourceid><addsrcrecordid>eNp9kktuFDEQhlsIJELgAqxKYsWiEz_oh9lFUYBIkRIlsLbc3eUZhx67sd0zmR134EYchZNQQyOhbJAXtsrf_1e5XEXxmrMTzlhzmjhTjSyZkCUXDVdl-6Q44lXblkKJ-imdJZ1rXrHnxYuU7hljSjF-VPy8Q59cdluX92C8GffJJQge0K-N73GAvMa4MSPkaHyaQszgPFzso_OrX99_3IQdjiN444MdZzeAHcPuPSFbTNmtTCYMwhYjGIhmcEugD3TfU1aEW4JgGk1G2Lm8Bh98OXtnQ9zAGk2GFObY42ly_ivMfiAnSvRwsBio7uDTy-KZNWPCV3_34-LLh4vP55_Kq-uPl-dnV2UvlcilYK2thq5josKuVUwOquaq60zdYK0aZgjrm7pG0yLvWGMrO3DJqlbVUrRNL4-LN4vvFMO3mZ6n76k0alnS1GRWc_lOcKJOFmplRtTO20CN62kNuHFUNFpH8bOm5VxycifB20cCYjI-5JWZU9KXd7ePWbGwfQwpRbR6im5j4l5zpg-DoJdB0DQI-s8g6INILqI0HT4N47-6_6P6DXeeu2M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920613421</pqid></control><display><type>article</type><title>Sensitivity analysis on enhanced thermal transport in Eyring–Powell nanofluid flow: investigating over a radiating convective Riga plate with non-uniform heat source/sink under flux conditions</title><source>SpringerLink Journals (MCLS)</source><creator>Mishra, S. R. ; Baag, S. ; Pattnaik, P. K. ; Panda, Subhajit</creator><creatorcontrib>Mishra, S. R. ; Baag, S. ; Pattnaik, P. K. ; Panda, Subhajit</creatorcontrib><description>The structural presentation of the current article based on the comprehensive sensitivity analysis on the enhanced thermal transport in Eyring–Powell nanofluid flow towards a radiating permeable convective Riga plate embedding in a permeable medium. Further, inclusion of non-uniform heat source/sink under the action of flux conditions enriches the study. A statistical approach, coupled with response surface methodology, is employed to investigate the intricate relationship between various parameters and their influence on the rate of heat transfer. The study focuses on the effects of nanoparticle concentration, temperature difference, convective heat transfer coefficient, and radiative heat production/absorption distribution on the thermal characteristics of the nanofluid flow. Computational simulations are performed to obtain numerical solutions employing Runge–Kutta–Fehlberg technique for the transformed governing equations, and sensitivity analysis is conducted to quantify the impact of input parameters on the desired output variables. The results demonstrate the significant role played by each parameter in determining the overall thermal behavior of the system. The sensitivity analysis provides valuable insights into the optimization and control of heat transfer rate in Eyring–Powell nanofluid flows, enabling the design of more efficient heat transfer systems.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-023-12719-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Convective heat transfer ; Fluid flow ; Heat transfer ; Heat transfer coefficients ; Inorganic Chemistry ; Investigations ; Measurement Science and Instrumentation ; Nanofluids ; Parameter sensitivity ; Permeability ; Physical Chemistry ; Polymer Sciences ; Response surface methodology ; Runge-Kutta method ; Sensitivity analysis ; Sensitivity enhancement ; Temperature gradients ; Thermodynamic properties ; Thermoelectricity</subject><ispartof>Journal of thermal analysis and calorimetry, 2024, Vol.149 (2), p.711-728</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2024 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-208f5dbb025eb8903d9619bba67e6970ac39c766ea8e1b07f5fd13058963287c3</citedby><cites>FETCH-LOGICAL-c392t-208f5dbb025eb8903d9619bba67e6970ac39c766ea8e1b07f5fd13058963287c3</cites><orcidid>0000-0002-3018-394X ; 0000-0003-2035-4183 ; 0000-0002-4865-0657 ; 0000-0001-9551-4837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-023-12719-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-023-12719-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Mishra, S. R.</creatorcontrib><creatorcontrib>Baag, S.</creatorcontrib><creatorcontrib>Pattnaik, P. K.</creatorcontrib><creatorcontrib>Panda, Subhajit</creatorcontrib><title>Sensitivity analysis on enhanced thermal transport in Eyring–Powell nanofluid flow: investigating over a radiating convective Riga plate with non-uniform heat source/sink under flux conditions</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The structural presentation of the current article based on the comprehensive sensitivity analysis on the enhanced thermal transport in Eyring–Powell nanofluid flow towards a radiating permeable convective Riga plate embedding in a permeable medium. Further, inclusion of non-uniform heat source/sink under the action of flux conditions enriches the study. A statistical approach, coupled with response surface methodology, is employed to investigate the intricate relationship between various parameters and their influence on the rate of heat transfer. The study focuses on the effects of nanoparticle concentration, temperature difference, convective heat transfer coefficient, and radiative heat production/absorption distribution on the thermal characteristics of the nanofluid flow. Computational simulations are performed to obtain numerical solutions employing Runge–Kutta–Fehlberg technique for the transformed governing equations, and sensitivity analysis is conducted to quantify the impact of input parameters on the desired output variables. The results demonstrate the significant role played by each parameter in determining the overall thermal behavior of the system. The sensitivity analysis provides valuable insights into the optimization and control of heat transfer rate in Eyring–Powell nanofluid flows, enabling the design of more efficient heat transfer systems.</description><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Convective heat transfer</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Measurement Science and Instrumentation</subject><subject>Nanofluids</subject><subject>Parameter sensitivity</subject><subject>Permeability</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Response surface methodology</subject><subject>Runge-Kutta method</subject><subject>Sensitivity analysis</subject><subject>Sensitivity enhancement</subject><subject>Temperature gradients</subject><subject>Thermodynamic properties</subject><subject>Thermoelectricity</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kktuFDEQhlsIJELgAqxKYsWiEz_oh9lFUYBIkRIlsLbc3eUZhx67sd0zmR134EYchZNQQyOhbJAXtsrf_1e5XEXxmrMTzlhzmjhTjSyZkCUXDVdl-6Q44lXblkKJ-imdJZ1rXrHnxYuU7hljSjF-VPy8Q59cdluX92C8GffJJQge0K-N73GAvMa4MSPkaHyaQszgPFzso_OrX99_3IQdjiN444MdZzeAHcPuPSFbTNmtTCYMwhYjGIhmcEugD3TfU1aEW4JgGk1G2Lm8Bh98OXtnQ9zAGk2GFObY42ly_ivMfiAnSvRwsBio7uDTy-KZNWPCV3_34-LLh4vP55_Kq-uPl-dnV2UvlcilYK2thq5josKuVUwOquaq60zdYK0aZgjrm7pG0yLvWGMrO3DJqlbVUrRNL4-LN4vvFMO3mZ6n76k0alnS1GRWc_lOcKJOFmplRtTO20CN62kNuHFUNFpH8bOm5VxycifB20cCYjI-5JWZU9KXd7ePWbGwfQwpRbR6im5j4l5zpg-DoJdB0DQI-s8g6INILqI0HT4N47-6_6P6DXeeu2M</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Mishra, S. R.</creator><creator>Baag, S.</creator><creator>Pattnaik, P. K.</creator><creator>Panda, Subhajit</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-3018-394X</orcidid><orcidid>https://orcid.org/0000-0003-2035-4183</orcidid><orcidid>https://orcid.org/0000-0002-4865-0657</orcidid><orcidid>https://orcid.org/0000-0001-9551-4837</orcidid></search><sort><creationdate>2024</creationdate><title>Sensitivity analysis on enhanced thermal transport in Eyring–Powell nanofluid flow: investigating over a radiating convective Riga plate with non-uniform heat source/sink under flux conditions</title><author>Mishra, S. R. ; Baag, S. ; Pattnaik, P. K. ; Panda, Subhajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-208f5dbb025eb8903d9619bba67e6970ac39c766ea8e1b07f5fd13058963287c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Convective heat transfer</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Measurement Science and Instrumentation</topic><topic>Nanofluids</topic><topic>Parameter sensitivity</topic><topic>Permeability</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Response surface methodology</topic><topic>Runge-Kutta method</topic><topic>Sensitivity analysis</topic><topic>Sensitivity enhancement</topic><topic>Temperature gradients</topic><topic>Thermodynamic properties</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, S. R.</creatorcontrib><creatorcontrib>Baag, S.</creatorcontrib><creatorcontrib>Pattnaik, P. K.</creatorcontrib><creatorcontrib>Panda, Subhajit</creatorcontrib><collection>CrossRef</collection><collection>Science In Context</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, S. R.</au><au>Baag, S.</au><au>Pattnaik, P. K.</au><au>Panda, Subhajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity analysis on enhanced thermal transport in Eyring–Powell nanofluid flow: investigating over a radiating convective Riga plate with non-uniform heat source/sink under flux conditions</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2024</date><risdate>2024</risdate><volume>149</volume><issue>2</issue><spage>711</spage><epage>728</epage><pages>711-728</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The structural presentation of the current article based on the comprehensive sensitivity analysis on the enhanced thermal transport in Eyring–Powell nanofluid flow towards a radiating permeable convective Riga plate embedding in a permeable medium. Further, inclusion of non-uniform heat source/sink under the action of flux conditions enriches the study. A statistical approach, coupled with response surface methodology, is employed to investigate the intricate relationship between various parameters and their influence on the rate of heat transfer. The study focuses on the effects of nanoparticle concentration, temperature difference, convective heat transfer coefficient, and radiative heat production/absorption distribution on the thermal characteristics of the nanofluid flow. Computational simulations are performed to obtain numerical solutions employing Runge–Kutta–Fehlberg technique for the transformed governing equations, and sensitivity analysis is conducted to quantify the impact of input parameters on the desired output variables. The results demonstrate the significant role played by each parameter in determining the overall thermal behavior of the system. The sensitivity analysis provides valuable insights into the optimization and control of heat transfer rate in Eyring–Powell nanofluid flows, enabling the design of more efficient heat transfer systems.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-023-12719-8</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-3018-394X</orcidid><orcidid>https://orcid.org/0000-0003-2035-4183</orcidid><orcidid>https://orcid.org/0000-0002-4865-0657</orcidid><orcidid>https://orcid.org/0000-0001-9551-4837</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2024, Vol.149 (2), p.711-728
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2920613421
source SpringerLink Journals (MCLS)
subjects Analytical Chemistry
Chemistry
Chemistry and Materials Science
Convective heat transfer
Fluid flow
Heat transfer
Heat transfer coefficients
Inorganic Chemistry
Investigations
Measurement Science and Instrumentation
Nanofluids
Parameter sensitivity
Permeability
Physical Chemistry
Polymer Sciences
Response surface methodology
Runge-Kutta method
Sensitivity analysis
Sensitivity enhancement
Temperature gradients
Thermodynamic properties
Thermoelectricity
title Sensitivity analysis on enhanced thermal transport in Eyring–Powell nanofluid flow: investigating over a radiating convective Riga plate with non-uniform heat source/sink under flux conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A08%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20analysis%20on%20enhanced%20thermal%20transport%20in%20Eyring%E2%80%93Powell%20nanofluid%20flow:%20investigating%20over%20a%20radiating%20convective%20Riga%20plate%20with%20non-uniform%20heat%20source/sink%20under%20flux%20conditions&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Mishra,%20S.%20R.&rft.date=2024&rft.volume=149&rft.issue=2&rft.spage=711&rft.epage=728&rft.pages=711-728&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-023-12719-8&rft_dat=%3Cgale_proqu%3EA781131058%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920613421&rft_id=info:pmid/&rft_galeid=A781131058&rfr_iscdi=true