Various coexisting attractors, asymmetry analysis and multistability control in a 3D memristive jerk system

In this paper, the dynamics of a 3D memristive jerk oscillator is investigated both analytically and numerically with the help of Routh-Hurwitz criteria, phase portraits, bifurcation diagrams, and basins of attraction. The analyses show that the system is bistable because of its inversion symmetry....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2022-07, Vol.137 (7), p.848, Article 848
Hauptverfasser: Kengne, Léandre Kamdjeu, Muni, Sishu Shankar, Chedjou, Jean Chamberlain, Kyandoghere, Kyamakya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 848
container_title European physical journal plus
container_volume 137
creator Kengne, Léandre Kamdjeu
Muni, Sishu Shankar
Chedjou, Jean Chamberlain
Kyandoghere, Kyamakya
description In this paper, the dynamics of a 3D memristive jerk oscillator is investigated both analytically and numerically with the help of Routh-Hurwitz criteria, phase portraits, bifurcation diagrams, and basins of attraction. The analyses show that the system is bistable because of its inversion symmetry. In addition, the system enters chaos by period-doubling bifurcation. It has a double-scroll chaotic attractor (as a result of mixing two bistable chaotic attractors). More interestingly, multistability involving the coexistence of multiple stable states (i.e., four and up to six coexisting attractors) is found when monitoring the system parameters and initial conditions. Furthermore, the state control from multistability to monostability is performed using the linear augmentation scheme. We also address the realistic issue of symmetry-breaking by considering an asymmetric memristive device. The asymmetry analysis produces two asymmetric coexisting bifurcation diagrams (i.e., asymmetric bi-stability) each of which exhibits its own sequence of bifurcations to chaos when monitoring the main control parameter. The PSpice circuit simulation results match well with the theoretical and numerical results. Finally, the microcontroller-based experimental implementation is carried out to verify the analytical and numerical studies. To the best of our knowledge, we would like to stress that the results obtained in this paper are unique and of great importance for developing and the understanding of memristive devices-based systems.
doi_str_mv 10.1140/epjp/s13360-022-03073-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920603499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920603499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-e3fdf16638eec638e516ec4e8aafec84d183d0d79e72bfa9a01f34002a1c7f1e3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EElXpN2CJLaF27OaxROUpIbEBtpbrjKukeeFxEOnX4xIk2DELzyzuubIOIeecXXEu2RL6ql8iFyJhEYvjiAmWimh_RGYxz1m0klIe_7lPyQKxYmFkzmUuZ2T3pl3ZDUhNB58l-rLdUu2908Z3Di-pxrFpwLuR6lbXI5YYjoI2Q-1DWm_KuvRjgFvvupqWLdVU3NAGGnco-wBagdtRHNFDc0ZOrK4RFj97Tl7vbl_WD9HT8_3j-vopMnEifQTCFpYnicgAzOFd8QSMhExrCyaTBc9EwYo0hzTeWJ1rxq2QjMWam9RyEHNyMfX2rnsfAL2qusGF76OK85glTMg8D6l0ShnXITqwqndlo92oOFMHueogV01yVZCrvuWqfSCzicRAtFtwv_3_oV_GWIRK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920603499</pqid></control><display><type>article</type><title>Various coexisting attractors, asymmetry analysis and multistability control in a 3D memristive jerk system</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Kengne, Léandre Kamdjeu ; Muni, Sishu Shankar ; Chedjou, Jean Chamberlain ; Kyandoghere, Kyamakya</creator><creatorcontrib>Kengne, Léandre Kamdjeu ; Muni, Sishu Shankar ; Chedjou, Jean Chamberlain ; Kyandoghere, Kyamakya</creatorcontrib><description>In this paper, the dynamics of a 3D memristive jerk oscillator is investigated both analytically and numerically with the help of Routh-Hurwitz criteria, phase portraits, bifurcation diagrams, and basins of attraction. The analyses show that the system is bistable because of its inversion symmetry. In addition, the system enters chaos by period-doubling bifurcation. It has a double-scroll chaotic attractor (as a result of mixing two bistable chaotic attractors). More interestingly, multistability involving the coexistence of multiple stable states (i.e., four and up to six coexisting attractors) is found when monitoring the system parameters and initial conditions. Furthermore, the state control from multistability to monostability is performed using the linear augmentation scheme. We also address the realistic issue of symmetry-breaking by considering an asymmetric memristive device. The asymmetry analysis produces two asymmetric coexisting bifurcation diagrams (i.e., asymmetric bi-stability) each of which exhibits its own sequence of bifurcations to chaos when monitoring the main control parameter. The PSpice circuit simulation results match well with the theoretical and numerical results. Finally, the microcontroller-based experimental implementation is carried out to verify the analytical and numerical studies. To the best of our knowledge, we would like to stress that the results obtained in this paper are unique and of great importance for developing and the understanding of memristive devices-based systems.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-03073-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Asymmetry ; Atomic ; Bifurcations ; Broken symmetry ; Circuits ; Complex Systems ; Condensed Matter Physics ; Eigenvalues ; Equilibrium ; Focus Point on Memristive Chaotic Circuits and Systems ; Initial conditions ; Investigations ; Mathematical and Computational Physics ; Mathematical models ; Memory devices ; Molecular ; Monitoring ; Optical and Plasma Physics ; Parameters ; Physics ; Physics and Astronomy ; Regular Article ; Routh-Hurwitz criterion ; Simulation ; Symmetry ; Theoretical ; Variables</subject><ispartof>European physical journal plus, 2022-07, Vol.137 (7), p.848, Article 848</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-e3fdf16638eec638e516ec4e8aafec84d183d0d79e72bfa9a01f34002a1c7f1e3</citedby><cites>FETCH-LOGICAL-c264t-e3fdf16638eec638e516ec4e8aafec84d183d0d79e72bfa9a01f34002a1c7f1e3</cites><orcidid>0000-0002-9197-8711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-022-03073-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920603499?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21387,27923,27924,33743,41487,42556,43804,51318,64384,64388,72240</link.rule.ids></links><search><creatorcontrib>Kengne, Léandre Kamdjeu</creatorcontrib><creatorcontrib>Muni, Sishu Shankar</creatorcontrib><creatorcontrib>Chedjou, Jean Chamberlain</creatorcontrib><creatorcontrib>Kyandoghere, Kyamakya</creatorcontrib><title>Various coexisting attractors, asymmetry analysis and multistability control in a 3D memristive jerk system</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>In this paper, the dynamics of a 3D memristive jerk oscillator is investigated both analytically and numerically with the help of Routh-Hurwitz criteria, phase portraits, bifurcation diagrams, and basins of attraction. The analyses show that the system is bistable because of its inversion symmetry. In addition, the system enters chaos by period-doubling bifurcation. It has a double-scroll chaotic attractor (as a result of mixing two bistable chaotic attractors). More interestingly, multistability involving the coexistence of multiple stable states (i.e., four and up to six coexisting attractors) is found when monitoring the system parameters and initial conditions. Furthermore, the state control from multistability to monostability is performed using the linear augmentation scheme. We also address the realistic issue of symmetry-breaking by considering an asymmetric memristive device. The asymmetry analysis produces two asymmetric coexisting bifurcation diagrams (i.e., asymmetric bi-stability) each of which exhibits its own sequence of bifurcations to chaos when monitoring the main control parameter. The PSpice circuit simulation results match well with the theoretical and numerical results. Finally, the microcontroller-based experimental implementation is carried out to verify the analytical and numerical studies. To the best of our knowledge, we would like to stress that the results obtained in this paper are unique and of great importance for developing and the understanding of memristive devices-based systems.</description><subject>Applied and Technical Physics</subject><subject>Asymmetry</subject><subject>Atomic</subject><subject>Bifurcations</subject><subject>Broken symmetry</subject><subject>Circuits</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Eigenvalues</subject><subject>Equilibrium</subject><subject>Focus Point on Memristive Chaotic Circuits and Systems</subject><subject>Initial conditions</subject><subject>Investigations</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Memory devices</subject><subject>Molecular</subject><subject>Monitoring</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Routh-Hurwitz criterion</subject><subject>Simulation</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Variables</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkMtOwzAQRS0EElXpN2CJLaF27OaxROUpIbEBtpbrjKukeeFxEOnX4xIk2DELzyzuubIOIeecXXEu2RL6ql8iFyJhEYvjiAmWimh_RGYxz1m0klIe_7lPyQKxYmFkzmUuZ2T3pl3ZDUhNB58l-rLdUu2908Z3Di-pxrFpwLuR6lbXI5YYjoI2Q-1DWm_KuvRjgFvvupqWLdVU3NAGGnco-wBagdtRHNFDc0ZOrK4RFj97Tl7vbl_WD9HT8_3j-vopMnEifQTCFpYnicgAzOFd8QSMhExrCyaTBc9EwYo0hzTeWJ1rxq2QjMWam9RyEHNyMfX2rnsfAL2qusGF76OK85glTMg8D6l0ShnXITqwqndlo92oOFMHueogV01yVZCrvuWqfSCzicRAtFtwv_3_oV_GWIRK</recordid><startdate>20220722</startdate><enddate>20220722</enddate><creator>Kengne, Léandre Kamdjeu</creator><creator>Muni, Sishu Shankar</creator><creator>Chedjou, Jean Chamberlain</creator><creator>Kyandoghere, Kyamakya</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-9197-8711</orcidid></search><sort><creationdate>20220722</creationdate><title>Various coexisting attractors, asymmetry analysis and multistability control in a 3D memristive jerk system</title><author>Kengne, Léandre Kamdjeu ; Muni, Sishu Shankar ; Chedjou, Jean Chamberlain ; Kyandoghere, Kyamakya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-e3fdf16638eec638e516ec4e8aafec84d183d0d79e72bfa9a01f34002a1c7f1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied and Technical Physics</topic><topic>Asymmetry</topic><topic>Atomic</topic><topic>Bifurcations</topic><topic>Broken symmetry</topic><topic>Circuits</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Eigenvalues</topic><topic>Equilibrium</topic><topic>Focus Point on Memristive Chaotic Circuits and Systems</topic><topic>Initial conditions</topic><topic>Investigations</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Memory devices</topic><topic>Molecular</topic><topic>Monitoring</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Routh-Hurwitz criterion</topic><topic>Simulation</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kengne, Léandre Kamdjeu</creatorcontrib><creatorcontrib>Muni, Sishu Shankar</creatorcontrib><creatorcontrib>Chedjou, Jean Chamberlain</creatorcontrib><creatorcontrib>Kyandoghere, Kyamakya</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kengne, Léandre Kamdjeu</au><au>Muni, Sishu Shankar</au><au>Chedjou, Jean Chamberlain</au><au>Kyandoghere, Kyamakya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Various coexisting attractors, asymmetry analysis and multistability control in a 3D memristive jerk system</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2022-07-22</date><risdate>2022</risdate><volume>137</volume><issue>7</issue><spage>848</spage><pages>848-</pages><artnum>848</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>In this paper, the dynamics of a 3D memristive jerk oscillator is investigated both analytically and numerically with the help of Routh-Hurwitz criteria, phase portraits, bifurcation diagrams, and basins of attraction. The analyses show that the system is bistable because of its inversion symmetry. In addition, the system enters chaos by period-doubling bifurcation. It has a double-scroll chaotic attractor (as a result of mixing two bistable chaotic attractors). More interestingly, multistability involving the coexistence of multiple stable states (i.e., four and up to six coexisting attractors) is found when monitoring the system parameters and initial conditions. Furthermore, the state control from multistability to monostability is performed using the linear augmentation scheme. We also address the realistic issue of symmetry-breaking by considering an asymmetric memristive device. The asymmetry analysis produces two asymmetric coexisting bifurcation diagrams (i.e., asymmetric bi-stability) each of which exhibits its own sequence of bifurcations to chaos when monitoring the main control parameter. The PSpice circuit simulation results match well with the theoretical and numerical results. Finally, the microcontroller-based experimental implementation is carried out to verify the analytical and numerical studies. To the best of our knowledge, we would like to stress that the results obtained in this paper are unique and of great importance for developing and the understanding of memristive devices-based systems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-022-03073-z</doi><orcidid>https://orcid.org/0000-0002-9197-8711</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2022-07, Vol.137 (7), p.848, Article 848
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2920603499
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Applied and Technical Physics
Asymmetry
Atomic
Bifurcations
Broken symmetry
Circuits
Complex Systems
Condensed Matter Physics
Eigenvalues
Equilibrium
Focus Point on Memristive Chaotic Circuits and Systems
Initial conditions
Investigations
Mathematical and Computational Physics
Mathematical models
Memory devices
Molecular
Monitoring
Optical and Plasma Physics
Parameters
Physics
Physics and Astronomy
Regular Article
Routh-Hurwitz criterion
Simulation
Symmetry
Theoretical
Variables
title Various coexisting attractors, asymmetry analysis and multistability control in a 3D memristive jerk system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Various%20coexisting%20attractors,%20asymmetry%20analysis%20and%20multistability%20control%20in%20a%203D%20memristive%20jerk%20system&rft.jtitle=European%20physical%20journal%20plus&rft.au=Kengne,%20L%C3%A9andre%20Kamdjeu&rft.date=2022-07-22&rft.volume=137&rft.issue=7&rft.spage=848&rft.pages=848-&rft.artnum=848&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-03073-z&rft_dat=%3Cproquest_cross%3E2920603499%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920603499&rft_id=info:pmid/&rfr_iscdi=true