Ionic-to-electronic conductivity of glasses in the P2O5-V2O5-ZnO-Li2O system

. Glasses having a composition 15V 2 O 5 -5ZnO-(80- x P 2 O 5 - x Li 2 O ( x = 5 , 10, 15 mol%) were prepared by the conventional melt quenching. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in a frequency range from 10 Hz to 10 MHz and in a tempera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2016-12, Vol.131 (12), p.421, Article 421
Hauptverfasser: Langar, A., Sdiri, N., Elhouichet, H., Ferid, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 421
container_title European physical journal plus
container_volume 131
creator Langar, A.
Sdiri, N.
Elhouichet, H.
Ferid, M.
description . Glasses having a composition 15V 2 O 5 -5ZnO-(80- x P 2 O 5 - x Li 2 O ( x = 5 , 10, 15 mol%) were prepared by the conventional melt quenching. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in a frequency range from 10 Hz to 10 MHz and in a temperature range from 513 K to 566 K. The structure of the amorphous synthetic product was corroborated by X-ray diffraction (disappearance of nacrite peaks). The DC conductivity follows the Arrhenius law and the activation energy determined by regression analysis varies with the content of Li 2 O. Frequency-dependent AC conductivity was analyzed by Jonscher's universal power law, which is varying as ω n , and the temperature-dependent power parameter supported by the Correlated Barrier Hopping (CBH) model. For x = 15 mol%, the values of n ≤ 0 . 5 confirm the dominance of ionic conductivity. The analysis of the modulus formalism with a distribution of relaxation times was carried out using the Kohlrausch-Williams-Watts (KWW) stretched exponential function. The stretching exponent, β , is dependent on temperature. The analysis of the temperature variation of the M” peak indicates that the relaxation process is thermally activated. Modulus study reveals the temperature-dependent non-Debye-type relaxation phenomenon.
doi_str_mv 10.1140/epjp/i2016-16421-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920551639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920551639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ecfed66d4f13b1a5d9133390366fb80d7e981f778ee3d5174dc49e12ffbe62883</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOOb-gFcFr-NykjRtLmX4MSjUC_XCm9ClJ7Nja2uSCf33dpugV56L8wHv-x54CLkGdgsg2Rz7TT9vOANFQUkOdDgjEw6a0VRKef5nvySzEDZsLKlBajkhxbJrG0tjR3GLNvrDldiurfc2Nl9NHJLOJettFQKGpGmT-IHJMy9T-nZo721Ji4aXSRhCxN0VuXDVNuDsZ07J68P9y-KJFuXjcnFXUCtAR4rWYa1ULR2IFVRprUEIoZlQyq1yVmeoc3BZliOKOoVM1lZqBO7cChXPczElN6fc3nefewzRbLq9b8eXhmvO0hSU0KOKn1TWdyF4dKb3za7ygwFmDuDMAZw5gjNHcGYYTeJkCqO4XaP_jf7H9Q1NwXHe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920551639</pqid></control><display><type>article</type><title>Ionic-to-electronic conductivity of glasses in the P2O5-V2O5-ZnO-Li2O system</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Langar, A. ; Sdiri, N. ; Elhouichet, H. ; Ferid, M.</creator><creatorcontrib>Langar, A. ; Sdiri, N. ; Elhouichet, H. ; Ferid, M.</creatorcontrib><description>. Glasses having a composition 15V 2 O 5 -5ZnO-(80- x P 2 O 5 - x Li 2 O ( x = 5 , 10, 15 mol%) were prepared by the conventional melt quenching. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in a frequency range from 10 Hz to 10 MHz and in a temperature range from 513 K to 566 K. The structure of the amorphous synthetic product was corroborated by X-ray diffraction (disappearance of nacrite peaks). The DC conductivity follows the Arrhenius law and the activation energy determined by regression analysis varies with the content of Li 2 O. Frequency-dependent AC conductivity was analyzed by Jonscher's universal power law, which is varying as ω n , and the temperature-dependent power parameter supported by the Correlated Barrier Hopping (CBH) model. For x = 15 mol%, the values of n ≤ 0 . 5 confirm the dominance of ionic conductivity. The analysis of the modulus formalism with a distribution of relaxation times was carried out using the Kohlrausch-Williams-Watts (KWW) stretched exponential function. The stretching exponent, β , is dependent on temperature. The analysis of the temperature variation of the M” peak indicates that the relaxation process is thermally activated. Modulus study reveals the temperature-dependent non-Debye-type relaxation phenomenon.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2016-16421-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Complex Systems ; Condensed Matter Physics ; Conductivity ; Debye temperature ; Exponential functions ; Frequency ranges ; Ion currents ; Lithium oxides ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Phosphorus pentoxide ; Physics ; Physics and Astronomy ; Regression analysis ; Regular Article ; Temperature dependence ; Theoretical ; X-ray diffraction ; Zinc oxide</subject><ispartof>European physical journal plus, 2016-12, Vol.131 (12), p.421, Article 421</ispartof><rights>Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ecfed66d4f13b1a5d9133390366fb80d7e981f778ee3d5174dc49e12ffbe62883</citedby><cites>FETCH-LOGICAL-c319t-ecfed66d4f13b1a5d9133390366fb80d7e981f778ee3d5174dc49e12ffbe62883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/i2016-16421-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920551639?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Langar, A.</creatorcontrib><creatorcontrib>Sdiri, N.</creatorcontrib><creatorcontrib>Elhouichet, H.</creatorcontrib><creatorcontrib>Ferid, M.</creatorcontrib><title>Ionic-to-electronic conductivity of glasses in the P2O5-V2O5-ZnO-Li2O system</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>. Glasses having a composition 15V 2 O 5 -5ZnO-(80- x P 2 O 5 - x Li 2 O ( x = 5 , 10, 15 mol%) were prepared by the conventional melt quenching. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in a frequency range from 10 Hz to 10 MHz and in a temperature range from 513 K to 566 K. The structure of the amorphous synthetic product was corroborated by X-ray diffraction (disappearance of nacrite peaks). The DC conductivity follows the Arrhenius law and the activation energy determined by regression analysis varies with the content of Li 2 O. Frequency-dependent AC conductivity was analyzed by Jonscher's universal power law, which is varying as ω n , and the temperature-dependent power parameter supported by the Correlated Barrier Hopping (CBH) model. For x = 15 mol%, the values of n ≤ 0 . 5 confirm the dominance of ionic conductivity. The analysis of the modulus formalism with a distribution of relaxation times was carried out using the Kohlrausch-Williams-Watts (KWW) stretched exponential function. The stretching exponent, β , is dependent on temperature. The analysis of the temperature variation of the M” peak indicates that the relaxation process is thermally activated. Modulus study reveals the temperature-dependent non-Debye-type relaxation phenomenon.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Conductivity</subject><subject>Debye temperature</subject><subject>Exponential functions</subject><subject>Frequency ranges</subject><subject>Ion currents</subject><subject>Lithium oxides</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Phosphorus pentoxide</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regression analysis</subject><subject>Regular Article</subject><subject>Temperature dependence</subject><subject>Theoretical</subject><subject>X-ray diffraction</subject><subject>Zinc oxide</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kF1LwzAUhoMoOOb-gFcFr-NykjRtLmX4MSjUC_XCm9ClJ7Nja2uSCf33dpugV56L8wHv-x54CLkGdgsg2Rz7TT9vOANFQUkOdDgjEw6a0VRKef5nvySzEDZsLKlBajkhxbJrG0tjR3GLNvrDldiurfc2Nl9NHJLOJettFQKGpGmT-IHJMy9T-nZo721Ji4aXSRhCxN0VuXDVNuDsZ07J68P9y-KJFuXjcnFXUCtAR4rWYa1ULR2IFVRprUEIoZlQyq1yVmeoc3BZliOKOoVM1lZqBO7cChXPczElN6fc3nefewzRbLq9b8eXhmvO0hSU0KOKn1TWdyF4dKb3za7ygwFmDuDMAZw5gjNHcGYYTeJkCqO4XaP_jf7H9Q1NwXHe</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Langar, A.</creator><creator>Sdiri, N.</creator><creator>Elhouichet, H.</creator><creator>Ferid, M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20161201</creationdate><title>Ionic-to-electronic conductivity of glasses in the P2O5-V2O5-ZnO-Li2O system</title><author>Langar, A. ; Sdiri, N. ; Elhouichet, H. ; Ferid, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ecfed66d4f13b1a5d9133390366fb80d7e981f778ee3d5174dc49e12ffbe62883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Conductivity</topic><topic>Debye temperature</topic><topic>Exponential functions</topic><topic>Frequency ranges</topic><topic>Ion currents</topic><topic>Lithium oxides</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Phosphorus pentoxide</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regression analysis</topic><topic>Regular Article</topic><topic>Temperature dependence</topic><topic>Theoretical</topic><topic>X-ray diffraction</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langar, A.</creatorcontrib><creatorcontrib>Sdiri, N.</creatorcontrib><creatorcontrib>Elhouichet, H.</creatorcontrib><creatorcontrib>Ferid, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langar, A.</au><au>Sdiri, N.</au><au>Elhouichet, H.</au><au>Ferid, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic-to-electronic conductivity of glasses in the P2O5-V2O5-ZnO-Li2O system</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>131</volume><issue>12</issue><spage>421</spage><pages>421-</pages><artnum>421</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>. Glasses having a composition 15V 2 O 5 -5ZnO-(80- x P 2 O 5 - x Li 2 O ( x = 5 , 10, 15 mol%) were prepared by the conventional melt quenching. Conduction and relaxation mechanisms in these glasses were studied using impedance spectroscopy in a frequency range from 10 Hz to 10 MHz and in a temperature range from 513 K to 566 K. The structure of the amorphous synthetic product was corroborated by X-ray diffraction (disappearance of nacrite peaks). The DC conductivity follows the Arrhenius law and the activation energy determined by regression analysis varies with the content of Li 2 O. Frequency-dependent AC conductivity was analyzed by Jonscher's universal power law, which is varying as ω n , and the temperature-dependent power parameter supported by the Correlated Barrier Hopping (CBH) model. For x = 15 mol%, the values of n ≤ 0 . 5 confirm the dominance of ionic conductivity. The analysis of the modulus formalism with a distribution of relaxation times was carried out using the Kohlrausch-Williams-Watts (KWW) stretched exponential function. The stretching exponent, β , is dependent on temperature. The analysis of the temperature variation of the M” peak indicates that the relaxation process is thermally activated. Modulus study reveals the temperature-dependent non-Debye-type relaxation phenomenon.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2016-16421-y</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2016-12, Vol.131 (12), p.421, Article 421
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2920551639
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Applied and Technical Physics
Atomic
Complex Systems
Condensed Matter Physics
Conductivity
Debye temperature
Exponential functions
Frequency ranges
Ion currents
Lithium oxides
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Phosphorus pentoxide
Physics
Physics and Astronomy
Regression analysis
Regular Article
Temperature dependence
Theoretical
X-ray diffraction
Zinc oxide
title Ionic-to-electronic conductivity of glasses in the P2O5-V2O5-ZnO-Li2O system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic-to-electronic%20conductivity%20of%20glasses%20in%20the%20P2O5-V2O5-ZnO-Li2O%20system&rft.jtitle=European%20physical%20journal%20plus&rft.au=Langar,%20A.&rft.date=2016-12-01&rft.volume=131&rft.issue=12&rft.spage=421&rft.pages=421-&rft.artnum=421&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2016-16421-y&rft_dat=%3Cproquest_cross%3E2920551639%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920551639&rft_id=info:pmid/&rfr_iscdi=true