Design of momentum fractional LMS for Hammerstein nonlinear system identification with application to electrically stimulated muscle model

. Fractional calculus extends the scope of adaptive algorithms supporting the design of novel fractional methods that outperform standard strategies in various applications arising in applied physics and engineering. In this study, a momentum fractional least-mean-square (M-FLMS) algorithm for nonli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2019-08, Vol.134 (8), p.407, Article 407
Hauptverfasser: Chaudhary, Naveed Ishtiaq, Zubair, Syed, Aslam, Muhammad Saeed, Raja, Muhammad Asif Zahoor, Machado, J. A. Tenreiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 407
container_title European physical journal plus
container_volume 134
creator Chaudhary, Naveed Ishtiaq
Zubair, Syed
Aslam, Muhammad Saeed
Raja, Muhammad Asif Zahoor
Machado, J. A. Tenreiro
description . Fractional calculus extends the scope of adaptive algorithms supporting the design of novel fractional methods that outperform standard strategies in various applications arising in applied physics and engineering. In this study, a momentum fractional least-mean-square (M-FLMS) algorithm for nonlinear system identification using a first and fractional-order gradient information is proposed. The M-FLMS avoids being trapped in local minima and provides faster convergence than the standard FLMS. The convergence and complexity analysis of the M-FLMS are given along with simulation results of a benchmark nonlinear system identification problem. The M-FLMS accuracy is verified through a parameter estimation problem for a nonlinear Hammerstein structure, modeling an electrically stimulated muscle (ESM) for rehabilitation of paralyzed muscles. The proposed method is studied in detail for different levels of noise variance, fractional orders and proportion of gradients used in the current update.
doi_str_mv 10.1140/epjp/i2019-12785-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920359853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920359853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b66ab784add2d46ca51897fb320c7e896dcdf2f90a536919c12b07ec518a38d03</originalsourceid><addsrcrecordid>eNp9kM9uGyEQxldVKtVK_AI9IeW8MbDsH46Rm9SVXOXQ9owwDC4WLFtgFfkV8tTBdqP2lLnM6NP3m9F8VfWZ4DtCGF7BdJhWlmLCa0L7oa2HD9WCEo7rljF29d_8qVqmdMClGCeMs0X18gWS3Y8oGOSDhzHPHpkoVbZhlA5tv_9AJkS0kd5DTBnsiMYwOjuCjCgdi-KR1YWzxip5otCzzb-RnCb3JuSAwIHKsQjOHVHK1s9OZtDIz0k5KKc1uJvqo5EuwfJvv65-PT78XG_q7dPXb-v7ba0awnO96zq56wcmtaaadUq2ZOC92TUUqx4G3mmlDTUcy7bpOOGK0B3uQRWbbAaNm-vq9rJ3iuHPDCmLQ5hj-TYJyiluWj60TXHRi0vFkFIEI6ZovYxHQbA4xS5OsYtz7OIcuxgK1FygVMzjHuK_1e9Qr8Jji1E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920359853</pqid></control><display><type>article</type><title>Design of momentum fractional LMS for Hammerstein nonlinear system identification with application to electrically stimulated muscle model</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central</source><creator>Chaudhary, Naveed Ishtiaq ; Zubair, Syed ; Aslam, Muhammad Saeed ; Raja, Muhammad Asif Zahoor ; Machado, J. A. Tenreiro</creator><creatorcontrib>Chaudhary, Naveed Ishtiaq ; Zubair, Syed ; Aslam, Muhammad Saeed ; Raja, Muhammad Asif Zahoor ; Machado, J. A. Tenreiro</creatorcontrib><description>. Fractional calculus extends the scope of adaptive algorithms supporting the design of novel fractional methods that outperform standard strategies in various applications arising in applied physics and engineering. In this study, a momentum fractional least-mean-square (M-FLMS) algorithm for nonlinear system identification using a first and fractional-order gradient information is proposed. The M-FLMS avoids being trapped in local minima and provides faster convergence than the standard FLMS. The convergence and complexity analysis of the M-FLMS are given along with simulation results of a benchmark nonlinear system identification problem. The M-FLMS accuracy is verified through a parameter estimation problem for a nonlinear Hammerstein structure, modeling an electrically stimulated muscle (ESM) for rehabilitation of paralyzed muscles. The proposed method is studied in detail for different levels of noise variance, fractional orders and proportion of gradients used in the current update.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2019-12785-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Adaptive algorithms ; Algorithms ; Applied and Technical Physics ; Applied physics ; Atomic ; Calculus ; Complex Systems ; Computer engineering ; Condensed Matter Physics ; Convergence ; Electrical engineering ; Fractional calculus ; Mathematical and Computational Physics ; Molecular ; Momentum ; Muscles ; Noise levels ; Nonlinear systems ; Optical and Plasma Physics ; Parameter estimation ; Parameter identification ; Physics ; Physics and Astronomy ; Regular Article ; System identification ; Theoretical ; Variables</subject><ispartof>European physical journal plus, 2019-08, Vol.134 (8), p.407, Article 407</ispartof><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b66ab784add2d46ca51897fb320c7e896dcdf2f90a536919c12b07ec518a38d03</citedby><cites>FETCH-LOGICAL-c319t-b66ab784add2d46ca51897fb320c7e896dcdf2f90a536919c12b07ec518a38d03</cites><orcidid>0000-0001-6219-4910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/i2019-12785-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920359853?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Chaudhary, Naveed Ishtiaq</creatorcontrib><creatorcontrib>Zubair, Syed</creatorcontrib><creatorcontrib>Aslam, Muhammad Saeed</creatorcontrib><creatorcontrib>Raja, Muhammad Asif Zahoor</creatorcontrib><creatorcontrib>Machado, J. A. Tenreiro</creatorcontrib><title>Design of momentum fractional LMS for Hammerstein nonlinear system identification with application to electrically stimulated muscle model</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>. Fractional calculus extends the scope of adaptive algorithms supporting the design of novel fractional methods that outperform standard strategies in various applications arising in applied physics and engineering. In this study, a momentum fractional least-mean-square (M-FLMS) algorithm for nonlinear system identification using a first and fractional-order gradient information is proposed. The M-FLMS avoids being trapped in local minima and provides faster convergence than the standard FLMS. The convergence and complexity analysis of the M-FLMS are given along with simulation results of a benchmark nonlinear system identification problem. The M-FLMS accuracy is verified through a parameter estimation problem for a nonlinear Hammerstein structure, modeling an electrically stimulated muscle (ESM) for rehabilitation of paralyzed muscles. The proposed method is studied in detail for different levels of noise variance, fractional orders and proportion of gradients used in the current update.</description><subject>Accuracy</subject><subject>Adaptive algorithms</subject><subject>Algorithms</subject><subject>Applied and Technical Physics</subject><subject>Applied physics</subject><subject>Atomic</subject><subject>Calculus</subject><subject>Complex Systems</subject><subject>Computer engineering</subject><subject>Condensed Matter Physics</subject><subject>Convergence</subject><subject>Electrical engineering</subject><subject>Fractional calculus</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Momentum</subject><subject>Muscles</subject><subject>Noise levels</subject><subject>Nonlinear systems</subject><subject>Optical and Plasma Physics</subject><subject>Parameter estimation</subject><subject>Parameter identification</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>System identification</subject><subject>Theoretical</subject><subject>Variables</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM9uGyEQxldVKtVK_AI9IeW8MbDsH46Rm9SVXOXQ9owwDC4WLFtgFfkV8tTBdqP2lLnM6NP3m9F8VfWZ4DtCGF7BdJhWlmLCa0L7oa2HD9WCEo7rljF29d_8qVqmdMClGCeMs0X18gWS3Y8oGOSDhzHPHpkoVbZhlA5tv_9AJkS0kd5DTBnsiMYwOjuCjCgdi-KR1YWzxip5otCzzb-RnCb3JuSAwIHKsQjOHVHK1s9OZtDIz0k5KKc1uJvqo5EuwfJvv65-PT78XG_q7dPXb-v7ba0awnO96zq56wcmtaaadUq2ZOC92TUUqx4G3mmlDTUcy7bpOOGK0B3uQRWbbAaNm-vq9rJ3iuHPDCmLQ5hj-TYJyiluWj60TXHRi0vFkFIEI6ZovYxHQbA4xS5OsYtz7OIcuxgK1FygVMzjHuK_1e9Qr8Jji1E</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Chaudhary, Naveed Ishtiaq</creator><creator>Zubair, Syed</creator><creator>Aslam, Muhammad Saeed</creator><creator>Raja, Muhammad Asif Zahoor</creator><creator>Machado, J. A. Tenreiro</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0001-6219-4910</orcidid></search><sort><creationdate>20190801</creationdate><title>Design of momentum fractional LMS for Hammerstein nonlinear system identification with application to electrically stimulated muscle model</title><author>Chaudhary, Naveed Ishtiaq ; Zubair, Syed ; Aslam, Muhammad Saeed ; Raja, Muhammad Asif Zahoor ; Machado, J. A. Tenreiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b66ab784add2d46ca51897fb320c7e896dcdf2f90a536919c12b07ec518a38d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Adaptive algorithms</topic><topic>Algorithms</topic><topic>Applied and Technical Physics</topic><topic>Applied physics</topic><topic>Atomic</topic><topic>Calculus</topic><topic>Complex Systems</topic><topic>Computer engineering</topic><topic>Condensed Matter Physics</topic><topic>Convergence</topic><topic>Electrical engineering</topic><topic>Fractional calculus</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Momentum</topic><topic>Muscles</topic><topic>Noise levels</topic><topic>Nonlinear systems</topic><topic>Optical and Plasma Physics</topic><topic>Parameter estimation</topic><topic>Parameter identification</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>System identification</topic><topic>Theoretical</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chaudhary, Naveed Ishtiaq</creatorcontrib><creatorcontrib>Zubair, Syed</creatorcontrib><creatorcontrib>Aslam, Muhammad Saeed</creatorcontrib><creatorcontrib>Raja, Muhammad Asif Zahoor</creatorcontrib><creatorcontrib>Machado, J. A. Tenreiro</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chaudhary, Naveed Ishtiaq</au><au>Zubair, Syed</au><au>Aslam, Muhammad Saeed</au><au>Raja, Muhammad Asif Zahoor</au><au>Machado, J. A. Tenreiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of momentum fractional LMS for Hammerstein nonlinear system identification with application to electrically stimulated muscle model</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>134</volume><issue>8</issue><spage>407</spage><pages>407-</pages><artnum>407</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>. Fractional calculus extends the scope of adaptive algorithms supporting the design of novel fractional methods that outperform standard strategies in various applications arising in applied physics and engineering. In this study, a momentum fractional least-mean-square (M-FLMS) algorithm for nonlinear system identification using a first and fractional-order gradient information is proposed. The M-FLMS avoids being trapped in local minima and provides faster convergence than the standard FLMS. The convergence and complexity analysis of the M-FLMS are given along with simulation results of a benchmark nonlinear system identification problem. The M-FLMS accuracy is verified through a parameter estimation problem for a nonlinear Hammerstein structure, modeling an electrically stimulated muscle (ESM) for rehabilitation of paralyzed muscles. The proposed method is studied in detail for different levels of noise variance, fractional orders and proportion of gradients used in the current update.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2019-12785-8</doi><orcidid>https://orcid.org/0000-0001-6219-4910</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2019-08, Vol.134 (8), p.407, Article 407
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2920359853
source Springer Nature - Complete Springer Journals; ProQuest Central
subjects Accuracy
Adaptive algorithms
Algorithms
Applied and Technical Physics
Applied physics
Atomic
Calculus
Complex Systems
Computer engineering
Condensed Matter Physics
Convergence
Electrical engineering
Fractional calculus
Mathematical and Computational Physics
Molecular
Momentum
Muscles
Noise levels
Nonlinear systems
Optical and Plasma Physics
Parameter estimation
Parameter identification
Physics
Physics and Astronomy
Regular Article
System identification
Theoretical
Variables
title Design of momentum fractional LMS for Hammerstein nonlinear system identification with application to electrically stimulated muscle model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T23%3A04%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20momentum%20fractional%20LMS%20for%20Hammerstein%20nonlinear%20system%20identification%20with%20application%20to%20electrically%20stimulated%20muscle%20model&rft.jtitle=European%20physical%20journal%20plus&rft.au=Chaudhary,%20Naveed%20Ishtiaq&rft.date=2019-08-01&rft.volume=134&rft.issue=8&rft.spage=407&rft.pages=407-&rft.artnum=407&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2019-12785-8&rft_dat=%3Cproquest_cross%3E2920359853%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920359853&rft_id=info:pmid/&rfr_iscdi=true