Rheological insight of wall slippage and microrotation on the coating thickness during non-isothermal forward roll coating phenomena of micropolar fluid
Roll coating is important for coating industries, including wallpaper, magnetic records, photographic and plastic films, wrapping, adhesive tapes, magazines, books, etc. This theoretical study examines the non-isothermal, incompressible, steady flow of micropolar fluid inside a forward roll coating...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2023-01, Vol.138 (1), p.105, Article 105 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 105 |
container_title | European physical journal plus |
container_volume | 138 |
creator | Abbas, Z. Hanif, A. Khaliq, S. |
description | Roll coating is important for coating industries, including wallpaper, magnetic records, photographic and plastic films, wrapping, adhesive tapes, magazines, books, etc. This theoretical study examines the non-isothermal, incompressible, steady flow of micropolar fluid inside a forward roll coating by using the lubrication approximation theory. Interesting engineering factors including pressure, roll-separating force, separation point, flow rate and power input are computed using a numerical technique, and further, the closed-form solutions for velocity, pressure gradient, temperature distribution and microrotation are also obtained. Graphs are used to show how the various parameters affect pressure, velocity, pressure gradient, shear stress and temperature distribution. Velocity profile, power input and separation points are the decreasing functions of the involved parameters. The fluid particle rotations increase the pressure distribution, leading to decreased coating thickness, which may help to improve the efficiency of coating process. |
doi_str_mv | 10.1140/epjp/s13360-023-03706-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920353794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920353794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-b93b7d1031a42e47c21dec472a333bdab40d050eb9062c7a027cd5209daf65873</originalsourceid><addsrcrecordid>eNqFkd1KAzEQhRdRsGifwYDXq5Of3XQvpfgHgiB6HbJJtk3dJjHZYn0TH9dsq-idIZBJOOebIacozjBcYMzg0oRVuEyY0hpKILQEyqEutwfFhOAGyooxdvinPi6mKa0gL9Zg1rBJ8fm0NL73C6tkj6xLdrEckO_Qu-x7lHobglwYJJ1Ga6uij36Qg_UO5T0sDVI-X90i11a9OpMS0ps4PjjvSpt81sR1Jnc-vsuoUfQZ-2MKS-P82jg5Ntzhg-9lRF2_sfq0OOpkn8z0-zwpXm6un-d35cPj7f386qFUpGZD2Ta05RoDxZIRw7giWBvFOJGU0lbLloGGCkzbQE0Ul0C40hWBRsuurmacnhTne26I_m1j0iBWfhNdbilIQ4BWlDcsq_helYdMKZpOhGjXMn4IDGJMQoxJiH0SIichdkmIbXbO9s4Uxo8x8Zf_n_ULWteUMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920353794</pqid></control><display><type>article</type><title>Rheological insight of wall slippage and microrotation on the coating thickness during non-isothermal forward roll coating phenomena of micropolar fluid</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Abbas, Z. ; Hanif, A. ; Khaliq, S.</creator><creatorcontrib>Abbas, Z. ; Hanif, A. ; Khaliq, S.</creatorcontrib><description>Roll coating is important for coating industries, including wallpaper, magnetic records, photographic and plastic films, wrapping, adhesive tapes, magazines, books, etc. This theoretical study examines the non-isothermal, incompressible, steady flow of micropolar fluid inside a forward roll coating by using the lubrication approximation theory. Interesting engineering factors including pressure, roll-separating force, separation point, flow rate and power input are computed using a numerical technique, and further, the closed-form solutions for velocity, pressure gradient, temperature distribution and microrotation are also obtained. Graphs are used to show how the various parameters affect pressure, velocity, pressure gradient, shear stress and temperature distribution. Velocity profile, power input and separation points are the decreasing functions of the involved parameters. The fluid particle rotations increase the pressure distribution, leading to decreased coating thickness, which may help to improve the efficiency of coating process.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-023-03706-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Approximation ; Atomic ; Boundary conditions ; Complex Systems ; Condensed Matter Physics ; Flow rates ; Fluid dynamics ; Fluid flow ; Incompressible flow ; Mathematical and Computational Physics ; Micropolar fluids ; Molecular ; Non-Newtonian fluids ; Optical and Plasma Physics ; Parameters ; Physics ; Physics and Astronomy ; Polymer films ; Pressure distribution ; Regular Article ; Reynolds number ; Rheological properties ; Rheology ; Roller coating ; Separation ; Shear stress ; Steady flow ; Temperature distribution ; Theoretical ; Thickness ; Velocity ; Velocity distribution ; Viscosity ; Wallpaper</subject><ispartof>European physical journal plus, 2023-01, Vol.138 (1), p.105, Article 105</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-b93b7d1031a42e47c21dec472a333bdab40d050eb9062c7a027cd5209daf65873</citedby><cites>FETCH-LOGICAL-c264t-b93b7d1031a42e47c21dec472a333bdab40d050eb9062c7a027cd5209daf65873</cites><orcidid>0000-0001-9425-8472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-023-03706-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920353794?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Abbas, Z.</creatorcontrib><creatorcontrib>Hanif, A.</creatorcontrib><creatorcontrib>Khaliq, S.</creatorcontrib><title>Rheological insight of wall slippage and microrotation on the coating thickness during non-isothermal forward roll coating phenomena of micropolar fluid</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>Roll coating is important for coating industries, including wallpaper, magnetic records, photographic and plastic films, wrapping, adhesive tapes, magazines, books, etc. This theoretical study examines the non-isothermal, incompressible, steady flow of micropolar fluid inside a forward roll coating by using the lubrication approximation theory. Interesting engineering factors including pressure, roll-separating force, separation point, flow rate and power input are computed using a numerical technique, and further, the closed-form solutions for velocity, pressure gradient, temperature distribution and microrotation are also obtained. Graphs are used to show how the various parameters affect pressure, velocity, pressure gradient, shear stress and temperature distribution. Velocity profile, power input and separation points are the decreasing functions of the involved parameters. The fluid particle rotations increase the pressure distribution, leading to decreased coating thickness, which may help to improve the efficiency of coating process.</description><subject>Applied and Technical Physics</subject><subject>Approximation</subject><subject>Atomic</subject><subject>Boundary conditions</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Flow rates</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Mathematical and Computational Physics</subject><subject>Micropolar fluids</subject><subject>Molecular</subject><subject>Non-Newtonian fluids</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer films</subject><subject>Pressure distribution</subject><subject>Regular Article</subject><subject>Reynolds number</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Roller coating</subject><subject>Separation</subject><subject>Shear stress</subject><subject>Steady flow</subject><subject>Temperature distribution</subject><subject>Theoretical</subject><subject>Thickness</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Viscosity</subject><subject>Wallpaper</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkd1KAzEQhRdRsGifwYDXq5Of3XQvpfgHgiB6HbJJtk3dJjHZYn0TH9dsq-idIZBJOOebIacozjBcYMzg0oRVuEyY0hpKILQEyqEutwfFhOAGyooxdvinPi6mKa0gL9Zg1rBJ8fm0NL73C6tkj6xLdrEckO_Qu-x7lHobglwYJJ1Ga6uij36Qg_UO5T0sDVI-X90i11a9OpMS0ps4PjjvSpt81sR1Jnc-vsuoUfQZ-2MKS-P82jg5Ntzhg-9lRF2_sfq0OOpkn8z0-zwpXm6un-d35cPj7f386qFUpGZD2Ta05RoDxZIRw7giWBvFOJGU0lbLloGGCkzbQE0Ul0C40hWBRsuurmacnhTne26I_m1j0iBWfhNdbilIQ4BWlDcsq_helYdMKZpOhGjXMn4IDGJMQoxJiH0SIichdkmIbXbO9s4Uxo8x8Zf_n_ULWteUMg</recordid><startdate>20230131</startdate><enddate>20230131</enddate><creator>Abbas, Z.</creator><creator>Hanif, A.</creator><creator>Khaliq, S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9425-8472</orcidid></search><sort><creationdate>20230131</creationdate><title>Rheological insight of wall slippage and microrotation on the coating thickness during non-isothermal forward roll coating phenomena of micropolar fluid</title><author>Abbas, Z. ; Hanif, A. ; Khaliq, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-b93b7d1031a42e47c21dec472a333bdab40d050eb9062c7a027cd5209daf65873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Approximation</topic><topic>Atomic</topic><topic>Boundary conditions</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Flow rates</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Mathematical and Computational Physics</topic><topic>Micropolar fluids</topic><topic>Molecular</topic><topic>Non-Newtonian fluids</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer films</topic><topic>Pressure distribution</topic><topic>Regular Article</topic><topic>Reynolds number</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Roller coating</topic><topic>Separation</topic><topic>Shear stress</topic><topic>Steady flow</topic><topic>Temperature distribution</topic><topic>Theoretical</topic><topic>Thickness</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Viscosity</topic><topic>Wallpaper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbas, Z.</creatorcontrib><creatorcontrib>Hanif, A.</creatorcontrib><creatorcontrib>Khaliq, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbas, Z.</au><au>Hanif, A.</au><au>Khaliq, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheological insight of wall slippage and microrotation on the coating thickness during non-isothermal forward roll coating phenomena of micropolar fluid</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2023-01-31</date><risdate>2023</risdate><volume>138</volume><issue>1</issue><spage>105</spage><pages>105-</pages><artnum>105</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>Roll coating is important for coating industries, including wallpaper, magnetic records, photographic and plastic films, wrapping, adhesive tapes, magazines, books, etc. This theoretical study examines the non-isothermal, incompressible, steady flow of micropolar fluid inside a forward roll coating by using the lubrication approximation theory. Interesting engineering factors including pressure, roll-separating force, separation point, flow rate and power input are computed using a numerical technique, and further, the closed-form solutions for velocity, pressure gradient, temperature distribution and microrotation are also obtained. Graphs are used to show how the various parameters affect pressure, velocity, pressure gradient, shear stress and temperature distribution. Velocity profile, power input and separation points are the decreasing functions of the involved parameters. The fluid particle rotations increase the pressure distribution, leading to decreased coating thickness, which may help to improve the efficiency of coating process.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-023-03706-x</doi><orcidid>https://orcid.org/0000-0001-9425-8472</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2023-01, Vol.138 (1), p.105, Article 105 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2920353794 |
source | SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Applied and Technical Physics Approximation Atomic Boundary conditions Complex Systems Condensed Matter Physics Flow rates Fluid dynamics Fluid flow Incompressible flow Mathematical and Computational Physics Micropolar fluids Molecular Non-Newtonian fluids Optical and Plasma Physics Parameters Physics Physics and Astronomy Polymer films Pressure distribution Regular Article Reynolds number Rheological properties Rheology Roller coating Separation Shear stress Steady flow Temperature distribution Theoretical Thickness Velocity Velocity distribution Viscosity Wallpaper |
title | Rheological insight of wall slippage and microrotation on the coating thickness during non-isothermal forward roll coating phenomena of micropolar fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheological%20insight%20of%20wall%20slippage%20and%20microrotation%20on%20the%20coating%20thickness%20during%20non-isothermal%20forward%20roll%20coating%20phenomena%20of%20micropolar%20fluid&rft.jtitle=European%20physical%20journal%20plus&rft.au=Abbas,%20Z.&rft.date=2023-01-31&rft.volume=138&rft.issue=1&rft.spage=105&rft.pages=105-&rft.artnum=105&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-023-03706-x&rft_dat=%3Cproquest_cross%3E2920353794%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920353794&rft_id=info:pmid/&rfr_iscdi=true |