Rheological insight of wall slippage and microrotation on the coating thickness during non-isothermal forward roll coating phenomena of micropolar fluid

Roll coating is important for coating industries, including wallpaper, magnetic records, photographic and plastic films, wrapping, adhesive tapes, magazines, books, etc. This theoretical study examines the non-isothermal, incompressible, steady flow of micropolar fluid inside a forward roll coating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2023-01, Vol.138 (1), p.105, Article 105
Hauptverfasser: Abbas, Z., Hanif, A., Khaliq, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 105
container_title European physical journal plus
container_volume 138
creator Abbas, Z.
Hanif, A.
Khaliq, S.
description Roll coating is important for coating industries, including wallpaper, magnetic records, photographic and plastic films, wrapping, adhesive tapes, magazines, books, etc. This theoretical study examines the non-isothermal, incompressible, steady flow of micropolar fluid inside a forward roll coating by using the lubrication approximation theory. Interesting engineering factors including pressure, roll-separating force, separation point, flow rate and power input are computed using a numerical technique, and further, the closed-form solutions for velocity, pressure gradient, temperature distribution and microrotation are also obtained. Graphs are used to show how the various parameters affect pressure, velocity, pressure gradient, shear stress and temperature distribution. Velocity profile, power input and separation points are the decreasing functions of the involved parameters. The fluid particle rotations increase the pressure distribution, leading to decreased coating thickness, which may help to improve the efficiency of coating process.
doi_str_mv 10.1140/epjp/s13360-023-03706-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920353794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920353794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-b93b7d1031a42e47c21dec472a333bdab40d050eb9062c7a027cd5209daf65873</originalsourceid><addsrcrecordid>eNqFkd1KAzEQhRdRsGifwYDXq5Of3XQvpfgHgiB6HbJJtk3dJjHZYn0TH9dsq-idIZBJOOebIacozjBcYMzg0oRVuEyY0hpKILQEyqEutwfFhOAGyooxdvinPi6mKa0gL9Zg1rBJ8fm0NL73C6tkj6xLdrEckO_Qu-x7lHobglwYJJ1Ga6uij36Qg_UO5T0sDVI-X90i11a9OpMS0ps4PjjvSpt81sR1Jnc-vsuoUfQZ-2MKS-P82jg5Ntzhg-9lRF2_sfq0OOpkn8z0-zwpXm6un-d35cPj7f386qFUpGZD2Ta05RoDxZIRw7giWBvFOJGU0lbLloGGCkzbQE0Ul0C40hWBRsuurmacnhTne26I_m1j0iBWfhNdbilIQ4BWlDcsq_helYdMKZpOhGjXMn4IDGJMQoxJiH0SIichdkmIbXbO9s4Uxo8x8Zf_n_ULWteUMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920353794</pqid></control><display><type>article</type><title>Rheological insight of wall slippage and microrotation on the coating thickness during non-isothermal forward roll coating phenomena of micropolar fluid</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Abbas, Z. ; Hanif, A. ; Khaliq, S.</creator><creatorcontrib>Abbas, Z. ; Hanif, A. ; Khaliq, S.</creatorcontrib><description>Roll coating is important for coating industries, including wallpaper, magnetic records, photographic and plastic films, wrapping, adhesive tapes, magazines, books, etc. This theoretical study examines the non-isothermal, incompressible, steady flow of micropolar fluid inside a forward roll coating by using the lubrication approximation theory. Interesting engineering factors including pressure, roll-separating force, separation point, flow rate and power input are computed using a numerical technique, and further, the closed-form solutions for velocity, pressure gradient, temperature distribution and microrotation are also obtained. Graphs are used to show how the various parameters affect pressure, velocity, pressure gradient, shear stress and temperature distribution. Velocity profile, power input and separation points are the decreasing functions of the involved parameters. The fluid particle rotations increase the pressure distribution, leading to decreased coating thickness, which may help to improve the efficiency of coating process.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-023-03706-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Approximation ; Atomic ; Boundary conditions ; Complex Systems ; Condensed Matter Physics ; Flow rates ; Fluid dynamics ; Fluid flow ; Incompressible flow ; Mathematical and Computational Physics ; Micropolar fluids ; Molecular ; Non-Newtonian fluids ; Optical and Plasma Physics ; Parameters ; Physics ; Physics and Astronomy ; Polymer films ; Pressure distribution ; Regular Article ; Reynolds number ; Rheological properties ; Rheology ; Roller coating ; Separation ; Shear stress ; Steady flow ; Temperature distribution ; Theoretical ; Thickness ; Velocity ; Velocity distribution ; Viscosity ; Wallpaper</subject><ispartof>European physical journal plus, 2023-01, Vol.138 (1), p.105, Article 105</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-b93b7d1031a42e47c21dec472a333bdab40d050eb9062c7a027cd5209daf65873</citedby><cites>FETCH-LOGICAL-c264t-b93b7d1031a42e47c21dec472a333bdab40d050eb9062c7a027cd5209daf65873</cites><orcidid>0000-0001-9425-8472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-023-03706-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920353794?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Abbas, Z.</creatorcontrib><creatorcontrib>Hanif, A.</creatorcontrib><creatorcontrib>Khaliq, S.</creatorcontrib><title>Rheological insight of wall slippage and microrotation on the coating thickness during non-isothermal forward roll coating phenomena of micropolar fluid</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>Roll coating is important for coating industries, including wallpaper, magnetic records, photographic and plastic films, wrapping, adhesive tapes, magazines, books, etc. This theoretical study examines the non-isothermal, incompressible, steady flow of micropolar fluid inside a forward roll coating by using the lubrication approximation theory. Interesting engineering factors including pressure, roll-separating force, separation point, flow rate and power input are computed using a numerical technique, and further, the closed-form solutions for velocity, pressure gradient, temperature distribution and microrotation are also obtained. Graphs are used to show how the various parameters affect pressure, velocity, pressure gradient, shear stress and temperature distribution. Velocity profile, power input and separation points are the decreasing functions of the involved parameters. The fluid particle rotations increase the pressure distribution, leading to decreased coating thickness, which may help to improve the efficiency of coating process.</description><subject>Applied and Technical Physics</subject><subject>Approximation</subject><subject>Atomic</subject><subject>Boundary conditions</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Flow rates</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Incompressible flow</subject><subject>Mathematical and Computational Physics</subject><subject>Micropolar fluids</subject><subject>Molecular</subject><subject>Non-Newtonian fluids</subject><subject>Optical and Plasma Physics</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polymer films</subject><subject>Pressure distribution</subject><subject>Regular Article</subject><subject>Reynolds number</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Roller coating</subject><subject>Separation</subject><subject>Shear stress</subject><subject>Steady flow</subject><subject>Temperature distribution</subject><subject>Theoretical</subject><subject>Thickness</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Viscosity</subject><subject>Wallpaper</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkd1KAzEQhRdRsGifwYDXq5Of3XQvpfgHgiB6HbJJtk3dJjHZYn0TH9dsq-idIZBJOOebIacozjBcYMzg0oRVuEyY0hpKILQEyqEutwfFhOAGyooxdvinPi6mKa0gL9Zg1rBJ8fm0NL73C6tkj6xLdrEckO_Qu-x7lHobglwYJJ1Ga6uij36Qg_UO5T0sDVI-X90i11a9OpMS0ps4PjjvSpt81sR1Jnc-vsuoUfQZ-2MKS-P82jg5Ntzhg-9lRF2_sfq0OOpkn8z0-zwpXm6un-d35cPj7f386qFUpGZD2Ta05RoDxZIRw7giWBvFOJGU0lbLloGGCkzbQE0Ul0C40hWBRsuurmacnhTne26I_m1j0iBWfhNdbilIQ4BWlDcsq_helYdMKZpOhGjXMn4IDGJMQoxJiH0SIichdkmIbXbO9s4Uxo8x8Zf_n_ULWteUMg</recordid><startdate>20230131</startdate><enddate>20230131</enddate><creator>Abbas, Z.</creator><creator>Hanif, A.</creator><creator>Khaliq, S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-9425-8472</orcidid></search><sort><creationdate>20230131</creationdate><title>Rheological insight of wall slippage and microrotation on the coating thickness during non-isothermal forward roll coating phenomena of micropolar fluid</title><author>Abbas, Z. ; Hanif, A. ; Khaliq, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-b93b7d1031a42e47c21dec472a333bdab40d050eb9062c7a027cd5209daf65873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Approximation</topic><topic>Atomic</topic><topic>Boundary conditions</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Flow rates</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Incompressible flow</topic><topic>Mathematical and Computational Physics</topic><topic>Micropolar fluids</topic><topic>Molecular</topic><topic>Non-Newtonian fluids</topic><topic>Optical and Plasma Physics</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polymer films</topic><topic>Pressure distribution</topic><topic>Regular Article</topic><topic>Reynolds number</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Roller coating</topic><topic>Separation</topic><topic>Shear stress</topic><topic>Steady flow</topic><topic>Temperature distribution</topic><topic>Theoretical</topic><topic>Thickness</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Viscosity</topic><topic>Wallpaper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abbas, Z.</creatorcontrib><creatorcontrib>Hanif, A.</creatorcontrib><creatorcontrib>Khaliq, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abbas, Z.</au><au>Hanif, A.</au><au>Khaliq, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheological insight of wall slippage and microrotation on the coating thickness during non-isothermal forward roll coating phenomena of micropolar fluid</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2023-01-31</date><risdate>2023</risdate><volume>138</volume><issue>1</issue><spage>105</spage><pages>105-</pages><artnum>105</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>Roll coating is important for coating industries, including wallpaper, magnetic records, photographic and plastic films, wrapping, adhesive tapes, magazines, books, etc. This theoretical study examines the non-isothermal, incompressible, steady flow of micropolar fluid inside a forward roll coating by using the lubrication approximation theory. Interesting engineering factors including pressure, roll-separating force, separation point, flow rate and power input are computed using a numerical technique, and further, the closed-form solutions for velocity, pressure gradient, temperature distribution and microrotation are also obtained. Graphs are used to show how the various parameters affect pressure, velocity, pressure gradient, shear stress and temperature distribution. Velocity profile, power input and separation points are the decreasing functions of the involved parameters. The fluid particle rotations increase the pressure distribution, leading to decreased coating thickness, which may help to improve the efficiency of coating process.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-023-03706-x</doi><orcidid>https://orcid.org/0000-0001-9425-8472</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2023-01, Vol.138 (1), p.105, Article 105
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2920353794
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Applied and Technical Physics
Approximation
Atomic
Boundary conditions
Complex Systems
Condensed Matter Physics
Flow rates
Fluid dynamics
Fluid flow
Incompressible flow
Mathematical and Computational Physics
Micropolar fluids
Molecular
Non-Newtonian fluids
Optical and Plasma Physics
Parameters
Physics
Physics and Astronomy
Polymer films
Pressure distribution
Regular Article
Reynolds number
Rheological properties
Rheology
Roller coating
Separation
Shear stress
Steady flow
Temperature distribution
Theoretical
Thickness
Velocity
Velocity distribution
Viscosity
Wallpaper
title Rheological insight of wall slippage and microrotation on the coating thickness during non-isothermal forward roll coating phenomena of micropolar fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheological%20insight%20of%20wall%20slippage%20and%20microrotation%20on%20the%20coating%20thickness%20during%20non-isothermal%20forward%20roll%20coating%20phenomena%20of%20micropolar%20fluid&rft.jtitle=European%20physical%20journal%20plus&rft.au=Abbas,%20Z.&rft.date=2023-01-31&rft.volume=138&rft.issue=1&rft.spage=105&rft.pages=105-&rft.artnum=105&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-023-03706-x&rft_dat=%3Cproquest_cross%3E2920353794%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920353794&rft_id=info:pmid/&rfr_iscdi=true