Combinatorial games played randomly: Chomp and nim

In this note, we investigate combinatorial games where both players move randomly (each turn, independently selecting a legal move uniformly at random). In this model, we provide closed-form expressions for the expected number of turns in a game of Chomp with any starting condition. We also derive a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-01
Hauptverfasser: Devlin, Pat, Trifonova, Paulina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Devlin, Pat
Trifonova, Paulina
description In this note, we investigate combinatorial games where both players move randomly (each turn, independently selecting a legal move uniformly at random). In this model, we provide closed-form expressions for the expected number of turns in a game of Chomp with any starting condition. We also derive and prove formulas for the win probabilities for any game of Chomp with at most two rows. Additionally, we completely analyze the game of nim under random play by finding the expected number of turns and win probabilities from any starting position.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2920353257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920353257</sourcerecordid><originalsourceid>FETCH-proquest_journals_29203532573</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_WPBciBtj1WtRfID3stKoKUk2Ju2hv7cHH-BpGGYWokCldtVxj7gSZc69lBIPNWqtCoEN-4cNNHCy5OBF3mSIjibTQaLQsXfTGZo3-wizQrB-I5ZPctmUP67F9nq5N7cqJv6MJg9tz2MKc2rxhFJphbpW_11f01YzoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920353257</pqid></control><display><type>article</type><title>Combinatorial games played randomly: Chomp and nim</title><source>Free E- Journals</source><creator>Devlin, Pat ; Trifonova, Paulina</creator><creatorcontrib>Devlin, Pat ; Trifonova, Paulina</creatorcontrib><description>In this note, we investigate combinatorial games where both players move randomly (each turn, independently selecting a legal move uniformly at random). In this model, we provide closed-form expressions for the expected number of turns in a game of Chomp with any starting condition. We also derive and prove formulas for the win probabilities for any game of Chomp with at most two rows. Additionally, we completely analyze the game of nim under random play by finding the expected number of turns and win probabilities from any starting position.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Combinatorial analysis ; Games</subject><ispartof>arXiv.org, 2024-01</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Devlin, Pat</creatorcontrib><creatorcontrib>Trifonova, Paulina</creatorcontrib><title>Combinatorial games played randomly: Chomp and nim</title><title>arXiv.org</title><description>In this note, we investigate combinatorial games where both players move randomly (each turn, independently selecting a legal move uniformly at random). In this model, we provide closed-form expressions for the expected number of turns in a game of Chomp with any starting condition. We also derive and prove formulas for the win probabilities for any game of Chomp with at most two rows. Additionally, we completely analyze the game of nim under random play by finding the expected number of turns and win probabilities from any starting position.</description><subject>Combinatorial analysis</subject><subject>Games</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNikEKwjAQAIMgWLR_WPBciBtj1WtRfID3stKoKUk2Ju2hv7cHH-BpGGYWokCldtVxj7gSZc69lBIPNWqtCoEN-4cNNHCy5OBF3mSIjibTQaLQsXfTGZo3-wizQrB-I5ZPctmUP67F9nq5N7cqJv6MJg9tz2MKc2rxhFJphbpW_11f01YzoQ</recordid><startdate>20240130</startdate><enddate>20240130</enddate><creator>Devlin, Pat</creator><creator>Trifonova, Paulina</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240130</creationdate><title>Combinatorial games played randomly: Chomp and nim</title><author>Devlin, Pat ; Trifonova, Paulina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29203532573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Combinatorial analysis</topic><topic>Games</topic><toplevel>online_resources</toplevel><creatorcontrib>Devlin, Pat</creatorcontrib><creatorcontrib>Trifonova, Paulina</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devlin, Pat</au><au>Trifonova, Paulina</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Combinatorial games played randomly: Chomp and nim</atitle><jtitle>arXiv.org</jtitle><date>2024-01-30</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In this note, we investigate combinatorial games where both players move randomly (each turn, independently selecting a legal move uniformly at random). In this model, we provide closed-form expressions for the expected number of turns in a game of Chomp with any starting condition. We also derive and prove formulas for the win probabilities for any game of Chomp with at most two rows. Additionally, we completely analyze the game of nim under random play by finding the expected number of turns and win probabilities from any starting position.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2920353257
source Free E- Journals
subjects Combinatorial analysis
Games
title Combinatorial games played randomly: Chomp and nim
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A49%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Combinatorial%20games%20played%20randomly:%20Chomp%20and%20nim&rft.jtitle=arXiv.org&rft.au=Devlin,%20Pat&rft.date=2024-01-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2920353257%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920353257&rft_id=info:pmid/&rfr_iscdi=true