Connecting the dots: anomaly and discontinuity detection in large-scale systems
Cloud providers and data centers rely heavily on forecasts to accurately predict future workload. This information helps them in appropriate virtualization and cost-effective provisioning of the infrastructure. The accuracy of a forecast greatly depends upon the merit of performance data fed to the...
Gespeichert in:
Veröffentlicht in: | Journal of ambient intelligence and humanized computing 2016-08, Vol.7 (4), p.509-522 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 522 |
---|---|
container_issue | 4 |
container_start_page | 509 |
container_title | Journal of ambient intelligence and humanized computing |
container_volume | 7 |
creator | Malik, Haroon Davis, Ian J. Godfrey, Michael W. Neuse, Douglas Manskovskii, Serge |
description | Cloud providers and data centers rely heavily on forecasts to accurately predict future workload. This information helps them in appropriate virtualization and cost-effective provisioning of the infrastructure. The accuracy of a forecast greatly depends upon the merit of performance data fed to the underlying algorithms. One of the fundamental problems faced by analysts in preparing data for use in forecasting is the timely identification of data discontinuities. A discontinuity is an abrupt change in a time-series pattern of a performance counter that persists but does not recur. Analysts need to identify discontinuities in performance data so that they can (a) remove the discontinuities from the data before building a forecast model and (b) retrain an existing forecast model on the performance data from the point in time where a discontinuity occurred. There exist several approaches and tools to help analysts identify anomalies in performance data. However, there exists no automated approach to assist data center operators in detecting discontinuities. In this paper, we present and evaluate our proposed approach to help data center analysts and cloud providers automatically detect discontinuities. A case study on the performance data obtained from a large cloud provider and performance tests conducted using an open source benchmark system show that our proposed approach provides on average precision of 84 % and recall 88 %. The approach does not require any domain knowledge to operate. |
doi_str_mv | 10.1007/s12652-016-0381-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920297404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920297404</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9df645a22a7665c4ba0ce90cb9b0e23de278fd9f6e79bc7777d17334fa41bd393</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWLQ_wF3AdTSvSSbupPiCQje6DpkkU6e0SU3Sxfx7M4zoyrs5d_Gdcy8HgBuC7wjG8j4TKhqKMBEIs5YgfgYWpBUtaghvzn93Ji_BMucdrsMUI4QswGYVQ_C2DGELy6eHLpb8AE2IB7MfqzrohmxjqMBpKCN0vkx0DHAIcG_S1qNszd7DPObiD_kaXPRmn_3yR6_Ax_PT--oVrTcvb6vHNbKMiIKU6wVvDKVGCtFY3hlsvcK2Ux32lDlPZds71QsvVWdlHUckY7w3nHSuPn8FbufcY4pfJ5-L3sVTCvWkpopiqiTHvFJkpmyKOSff62MaDiaNmmA9Vafn6nStTk_V6clDZ0-ubNj69Jf8v-kbBMFxWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920297404</pqid></control><display><type>article</type><title>Connecting the dots: anomaly and discontinuity detection in large-scale systems</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Malik, Haroon ; Davis, Ian J. ; Godfrey, Michael W. ; Neuse, Douglas ; Manskovskii, Serge</creator><creatorcontrib>Malik, Haroon ; Davis, Ian J. ; Godfrey, Michael W. ; Neuse, Douglas ; Manskovskii, Serge</creatorcontrib><description>Cloud providers and data centers rely heavily on forecasts to accurately predict future workload. This information helps them in appropriate virtualization and cost-effective provisioning of the infrastructure. The accuracy of a forecast greatly depends upon the merit of performance data fed to the underlying algorithms. One of the fundamental problems faced by analysts in preparing data for use in forecasting is the timely identification of data discontinuities. A discontinuity is an abrupt change in a time-series pattern of a performance counter that persists but does not recur. Analysts need to identify discontinuities in performance data so that they can (a) remove the discontinuities from the data before building a forecast model and (b) retrain an existing forecast model on the performance data from the point in time where a discontinuity occurred. There exist several approaches and tools to help analysts identify anomalies in performance data. However, there exists no automated approach to assist data center operators in detecting discontinuities. In this paper, we present and evaluate our proposed approach to help data center analysts and cloud providers automatically detect discontinuities. A case study on the performance data obtained from a large cloud provider and performance tests conducted using an open source benchmark system show that our proposed approach provides on average precision of 84 % and recall 88 %. The approach does not require any domain knowledge to operate.</description><identifier>ISSN: 1868-5137</identifier><identifier>EISSN: 1868-5145</identifier><identifier>DOI: 10.1007/s12652-016-0381-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Artificial Intelligence ; Automation ; Case studies ; Computational Intelligence ; Computer centers ; Data analysis ; Discontinuity ; Engineering ; Forecasting ; Forecasting techniques ; Mathematical models ; Original Research ; Performance tests ; Provisioning ; Robotics and Automation ; Time series ; User Interfaces and Human Computer Interaction ; Workloads</subject><ispartof>Journal of ambient intelligence and humanized computing, 2016-08, Vol.7 (4), p.509-522</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Springer-Verlag Berlin Heidelberg 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9df645a22a7665c4ba0ce90cb9b0e23de278fd9f6e79bc7777d17334fa41bd393</citedby><cites>FETCH-LOGICAL-c316t-9df645a22a7665c4ba0ce90cb9b0e23de278fd9f6e79bc7777d17334fa41bd393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12652-016-0381-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920297404?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Malik, Haroon</creatorcontrib><creatorcontrib>Davis, Ian J.</creatorcontrib><creatorcontrib>Godfrey, Michael W.</creatorcontrib><creatorcontrib>Neuse, Douglas</creatorcontrib><creatorcontrib>Manskovskii, Serge</creatorcontrib><title>Connecting the dots: anomaly and discontinuity detection in large-scale systems</title><title>Journal of ambient intelligence and humanized computing</title><addtitle>J Ambient Intell Human Comput</addtitle><description>Cloud providers and data centers rely heavily on forecasts to accurately predict future workload. This information helps them in appropriate virtualization and cost-effective provisioning of the infrastructure. The accuracy of a forecast greatly depends upon the merit of performance data fed to the underlying algorithms. One of the fundamental problems faced by analysts in preparing data for use in forecasting is the timely identification of data discontinuities. A discontinuity is an abrupt change in a time-series pattern of a performance counter that persists but does not recur. Analysts need to identify discontinuities in performance data so that they can (a) remove the discontinuities from the data before building a forecast model and (b) retrain an existing forecast model on the performance data from the point in time where a discontinuity occurred. There exist several approaches and tools to help analysts identify anomalies in performance data. However, there exists no automated approach to assist data center operators in detecting discontinuities. In this paper, we present and evaluate our proposed approach to help data center analysts and cloud providers automatically detect discontinuities. A case study on the performance data obtained from a large cloud provider and performance tests conducted using an open source benchmark system show that our proposed approach provides on average precision of 84 % and recall 88 %. The approach does not require any domain knowledge to operate.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Case studies</subject><subject>Computational Intelligence</subject><subject>Computer centers</subject><subject>Data analysis</subject><subject>Discontinuity</subject><subject>Engineering</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Mathematical models</subject><subject>Original Research</subject><subject>Performance tests</subject><subject>Provisioning</subject><subject>Robotics and Automation</subject><subject>Time series</subject><subject>User Interfaces and Human Computer Interaction</subject><subject>Workloads</subject><issn>1868-5137</issn><issn>1868-5145</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWLQ_wF3AdTSvSSbupPiCQje6DpkkU6e0SU3Sxfx7M4zoyrs5d_Gdcy8HgBuC7wjG8j4TKhqKMBEIs5YgfgYWpBUtaghvzn93Ji_BMucdrsMUI4QswGYVQ_C2DGELy6eHLpb8AE2IB7MfqzrohmxjqMBpKCN0vkx0DHAIcG_S1qNszd7DPObiD_kaXPRmn_3yR6_Ax_PT--oVrTcvb6vHNbKMiIKU6wVvDKVGCtFY3hlsvcK2Ux32lDlPZds71QsvVWdlHUckY7w3nHSuPn8FbufcY4pfJ5-L3sVTCvWkpopiqiTHvFJkpmyKOSff62MaDiaNmmA9Vafn6nStTk_V6clDZ0-ubNj69Jf8v-kbBMFxWw</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Malik, Haroon</creator><creator>Davis, Ian J.</creator><creator>Godfrey, Michael W.</creator><creator>Neuse, Douglas</creator><creator>Manskovskii, Serge</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20160801</creationdate><title>Connecting the dots: anomaly and discontinuity detection in large-scale systems</title><author>Malik, Haroon ; Davis, Ian J. ; Godfrey, Michael W. ; Neuse, Douglas ; Manskovskii, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9df645a22a7665c4ba0ce90cb9b0e23de278fd9f6e79bc7777d17334fa41bd393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Case studies</topic><topic>Computational Intelligence</topic><topic>Computer centers</topic><topic>Data analysis</topic><topic>Discontinuity</topic><topic>Engineering</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Mathematical models</topic><topic>Original Research</topic><topic>Performance tests</topic><topic>Provisioning</topic><topic>Robotics and Automation</topic><topic>Time series</topic><topic>User Interfaces and Human Computer Interaction</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malik, Haroon</creatorcontrib><creatorcontrib>Davis, Ian J.</creatorcontrib><creatorcontrib>Godfrey, Michael W.</creatorcontrib><creatorcontrib>Neuse, Douglas</creatorcontrib><creatorcontrib>Manskovskii, Serge</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of ambient intelligence and humanized computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malik, Haroon</au><au>Davis, Ian J.</au><au>Godfrey, Michael W.</au><au>Neuse, Douglas</au><au>Manskovskii, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connecting the dots: anomaly and discontinuity detection in large-scale systems</atitle><jtitle>Journal of ambient intelligence and humanized computing</jtitle><stitle>J Ambient Intell Human Comput</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>7</volume><issue>4</issue><spage>509</spage><epage>522</epage><pages>509-522</pages><issn>1868-5137</issn><eissn>1868-5145</eissn><abstract>Cloud providers and data centers rely heavily on forecasts to accurately predict future workload. This information helps them in appropriate virtualization and cost-effective provisioning of the infrastructure. The accuracy of a forecast greatly depends upon the merit of performance data fed to the underlying algorithms. One of the fundamental problems faced by analysts in preparing data for use in forecasting is the timely identification of data discontinuities. A discontinuity is an abrupt change in a time-series pattern of a performance counter that persists but does not recur. Analysts need to identify discontinuities in performance data so that they can (a) remove the discontinuities from the data before building a forecast model and (b) retrain an existing forecast model on the performance data from the point in time where a discontinuity occurred. There exist several approaches and tools to help analysts identify anomalies in performance data. However, there exists no automated approach to assist data center operators in detecting discontinuities. In this paper, we present and evaluate our proposed approach to help data center analysts and cloud providers automatically detect discontinuities. A case study on the performance data obtained from a large cloud provider and performance tests conducted using an open source benchmark system show that our proposed approach provides on average precision of 84 % and recall 88 %. The approach does not require any domain knowledge to operate.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12652-016-0381-4</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-5137 |
ispartof | Journal of ambient intelligence and humanized computing, 2016-08, Vol.7 (4), p.509-522 |
issn | 1868-5137 1868-5145 |
language | eng |
recordid | cdi_proquest_journals_2920297404 |
source | ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central |
subjects | Algorithms Artificial Intelligence Automation Case studies Computational Intelligence Computer centers Data analysis Discontinuity Engineering Forecasting Forecasting techniques Mathematical models Original Research Performance tests Provisioning Robotics and Automation Time series User Interfaces and Human Computer Interaction Workloads |
title | Connecting the dots: anomaly and discontinuity detection in large-scale systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A35%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connecting%20the%20dots:%20anomaly%20and%20discontinuity%20detection%20in%20large-scale%20systems&rft.jtitle=Journal%20of%20ambient%20intelligence%20and%20humanized%20computing&rft.au=Malik,%20Haroon&rft.date=2016-08-01&rft.volume=7&rft.issue=4&rft.spage=509&rft.epage=522&rft.pages=509-522&rft.issn=1868-5137&rft.eissn=1868-5145&rft_id=info:doi/10.1007/s12652-016-0381-4&rft_dat=%3Cproquest_cross%3E2920297404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920297404&rft_id=info:pmid/&rfr_iscdi=true |