Precise Position Control in Air-bearing PMLSM System Using An Improved Anticipatory Fractional-Order Iterative Learning Control

The periodic motion of a permanent magnet linear synchronous motor (PMLSM) used in industrial applications requires considerable acceleration and deceleration at the start-stop stage, resulting in significant peak position errors. Moreover, thrust fluctuation due to the cogging effect, end effect, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2024-06, Vol.71 (6), p.1-10
Hauptverfasser: Wang, Mingyi, Kang, Kai, Zhang, Chengming, Li, Liyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue 6
container_start_page 1
container_title IEEE transactions on industrial electronics (1982)
container_volume 71
creator Wang, Mingyi
Kang, Kai
Zhang, Chengming
Li, Liyi
description The periodic motion of a permanent magnet linear synchronous motor (PMLSM) used in industrial applications requires considerable acceleration and deceleration at the start-stop stage, resulting in significant peak position errors. Moreover, thrust fluctuation due to the cogging effect, end effect, armature reaction, asymmetry of winding parameters, and time-varying electrical parameters will degrade the position-tracking precision at constant velocity. Thus, to avoid these impacts on position control accuracy, this paper proposes an improved anticipatory fractional-order iterative learning control (AFOILC), named the anticipatory lead fractional-order ILC (ALFOILC). ALFOILC is superior to the anticipatory \rm {D}^\alpha-type ILC (ADFOILC) regarding amplitude and phase compensation. Thus, ALFOILC increases the learnable band further. Moreover, this work analyzes the design, approximation, discretization, and tuning strategy for the decoupling parameters associated with ALFOILC. Finally, we build an experimental platform with an air-bearing PMLSM to validate the efficacy of ALFOILC through comparative experiments against ADFOILC and integer-order ILC.
doi_str_mv 10.1109/TIE.2023.3290251
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2920289665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10173736</ieee_id><sourcerecordid>2920289665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-fc67d3a5d1f5766c01879c2a5ab32b66015f3ceb26c2356cdebb0cd86f4b20e3</originalsourceid><addsrcrecordid>eNpNkL1rwzAQxUVpoWnavUMHQWen-rBkewwhbQ0OCSSdhSyfi0JipZISyNR_vTbJ0OmO473fPR5Cz5RMKCXF26acTxhhfMJZQZigN2hEhciSokjzWzQiLMsTQlJ5jx5C2BJCU0HFCP2uPBgbAK9csNG6Ds9cF73bYdvhqfVJDdrb7huvFtV6gdfnEGGPv8Jwmna43B-8O0HT79Eae9DR-TN-99oMLL1Llr4Bj8sIXkd7Alz1uG4wX988ortW7wI8XecYbd7nm9lnUi0_ytm0SgwrWExaI7OGa9HQVmRSGkLzrDBMC11zVktJqGi5gZpJw7iQpoG6JqbJZZvWjAAfo9cLto_7c4QQ1dYdfR8wqJ5PWF5IKXoVuaiMdyF4aNXB2732Z0WJGlpWfctqaFldW-4tLxeLBYB_cprxjEv-B3IDejU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920289665</pqid></control><display><type>article</type><title>Precise Position Control in Air-bearing PMLSM System Using An Improved Anticipatory Fractional-Order Iterative Learning Control</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Mingyi ; Kang, Kai ; Zhang, Chengming ; Li, Liyi</creator><creatorcontrib>Wang, Mingyi ; Kang, Kai ; Zhang, Chengming ; Li, Liyi</creatorcontrib><description>The periodic motion of a permanent magnet linear synchronous motor (PMLSM) used in industrial applications requires considerable acceleration and deceleration at the start-stop stage, resulting in significant peak position errors. Moreover, thrust fluctuation due to the cogging effect, end effect, armature reaction, asymmetry of winding parameters, and time-varying electrical parameters will degrade the position-tracking precision at constant velocity. Thus, to avoid these impacts on position control accuracy, this paper proposes an improved anticipatory fractional-order iterative learning control (AFOILC), named the anticipatory lead fractional-order ILC (ALFOILC). ALFOILC is superior to the anticipatory &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\rm {D}^\alpha&lt;/tex-math&gt;&lt;/inline-formula&gt;-type ILC (ADFOILC) regarding amplitude and phase compensation. Thus, ALFOILC increases the learnable band further. Moreover, this work analyzes the design, approximation, discretization, and tuning strategy for the decoupling parameters associated with ALFOILC. Finally, we build an experimental platform with an air-bearing PMLSM to validate the efficacy of ALFOILC through comparative experiments against ADFOILC and integer-order ILC.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2023.3290251</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Convergence ; Deceleration ; Decoupling ; Feedforward systems ; Fluctuations ; Industrial applications ; iterative learning control (ILC) ; Iterative methods ; Lead ; Learning ; Parameters ; Permanent magnet linear synchronous motor (PMLSM) ; Permanent magnets ; Position control ; Position errors ; Synchronous motors ; Tracking ; Tuning ; two-degree-of-freedom (2-DOF) control</subject><ispartof>IEEE transactions on industrial electronics (1982), 2024-06, Vol.71 (6), p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-fc67d3a5d1f5766c01879c2a5ab32b66015f3ceb26c2356cdebb0cd86f4b20e3</citedby><cites>FETCH-LOGICAL-c292t-fc67d3a5d1f5766c01879c2a5ab32b66015f3ceb26c2356cdebb0cd86f4b20e3</cites><orcidid>0000-0003-4920-9481 ; 0000-0002-6382-2891 ; 0000-0002-6562-4530 ; 0000-0003-0596-9454</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10173736$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10173736$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Mingyi</creatorcontrib><creatorcontrib>Kang, Kai</creatorcontrib><creatorcontrib>Zhang, Chengming</creatorcontrib><creatorcontrib>Li, Liyi</creatorcontrib><title>Precise Position Control in Air-bearing PMLSM System Using An Improved Anticipatory Fractional-Order Iterative Learning Control</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>The periodic motion of a permanent magnet linear synchronous motor (PMLSM) used in industrial applications requires considerable acceleration and deceleration at the start-stop stage, resulting in significant peak position errors. Moreover, thrust fluctuation due to the cogging effect, end effect, armature reaction, asymmetry of winding parameters, and time-varying electrical parameters will degrade the position-tracking precision at constant velocity. Thus, to avoid these impacts on position control accuracy, this paper proposes an improved anticipatory fractional-order iterative learning control (AFOILC), named the anticipatory lead fractional-order ILC (ALFOILC). ALFOILC is superior to the anticipatory &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\rm {D}^\alpha&lt;/tex-math&gt;&lt;/inline-formula&gt;-type ILC (ADFOILC) regarding amplitude and phase compensation. Thus, ALFOILC increases the learnable band further. Moreover, this work analyzes the design, approximation, discretization, and tuning strategy for the decoupling parameters associated with ALFOILC. Finally, we build an experimental platform with an air-bearing PMLSM to validate the efficacy of ALFOILC through comparative experiments against ADFOILC and integer-order ILC.</description><subject>Acceleration</subject><subject>Convergence</subject><subject>Deceleration</subject><subject>Decoupling</subject><subject>Feedforward systems</subject><subject>Fluctuations</subject><subject>Industrial applications</subject><subject>iterative learning control (ILC)</subject><subject>Iterative methods</subject><subject>Lead</subject><subject>Learning</subject><subject>Parameters</subject><subject>Permanent magnet linear synchronous motor (PMLSM)</subject><subject>Permanent magnets</subject><subject>Position control</subject><subject>Position errors</subject><subject>Synchronous motors</subject><subject>Tracking</subject><subject>Tuning</subject><subject>two-degree-of-freedom (2-DOF) control</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkL1rwzAQxUVpoWnavUMHQWen-rBkewwhbQ0OCSSdhSyfi0JipZISyNR_vTbJ0OmO473fPR5Cz5RMKCXF26acTxhhfMJZQZigN2hEhciSokjzWzQiLMsTQlJ5jx5C2BJCU0HFCP2uPBgbAK9csNG6Ds9cF73bYdvhqfVJDdrb7huvFtV6gdfnEGGPv8Jwmna43B-8O0HT79Eae9DR-TN-99oMLL1Llr4Bj8sIXkd7Alz1uG4wX988ortW7wI8XecYbd7nm9lnUi0_ytm0SgwrWExaI7OGa9HQVmRSGkLzrDBMC11zVktJqGi5gZpJw7iQpoG6JqbJZZvWjAAfo9cLto_7c4QQ1dYdfR8wqJ5PWF5IKXoVuaiMdyF4aNXB2732Z0WJGlpWfctqaFldW-4tLxeLBYB_cprxjEv-B3IDejU</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Wang, Mingyi</creator><creator>Kang, Kai</creator><creator>Zhang, Chengming</creator><creator>Li, Liyi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4920-9481</orcidid><orcidid>https://orcid.org/0000-0002-6382-2891</orcidid><orcidid>https://orcid.org/0000-0002-6562-4530</orcidid><orcidid>https://orcid.org/0000-0003-0596-9454</orcidid></search><sort><creationdate>20240601</creationdate><title>Precise Position Control in Air-bearing PMLSM System Using An Improved Anticipatory Fractional-Order Iterative Learning Control</title><author>Wang, Mingyi ; Kang, Kai ; Zhang, Chengming ; Li, Liyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-fc67d3a5d1f5766c01879c2a5ab32b66015f3ceb26c2356cdebb0cd86f4b20e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acceleration</topic><topic>Convergence</topic><topic>Deceleration</topic><topic>Decoupling</topic><topic>Feedforward systems</topic><topic>Fluctuations</topic><topic>Industrial applications</topic><topic>iterative learning control (ILC)</topic><topic>Iterative methods</topic><topic>Lead</topic><topic>Learning</topic><topic>Parameters</topic><topic>Permanent magnet linear synchronous motor (PMLSM)</topic><topic>Permanent magnets</topic><topic>Position control</topic><topic>Position errors</topic><topic>Synchronous motors</topic><topic>Tracking</topic><topic>Tuning</topic><topic>two-degree-of-freedom (2-DOF) control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mingyi</creatorcontrib><creatorcontrib>Kang, Kai</creatorcontrib><creatorcontrib>Zhang, Chengming</creatorcontrib><creatorcontrib>Li, Liyi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Mingyi</au><au>Kang, Kai</au><au>Zhang, Chengming</au><au>Li, Liyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Position Control in Air-bearing PMLSM System Using An Improved Anticipatory Fractional-Order Iterative Learning Control</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2024-06-01</date><risdate>2024</risdate><volume>71</volume><issue>6</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>The periodic motion of a permanent magnet linear synchronous motor (PMLSM) used in industrial applications requires considerable acceleration and deceleration at the start-stop stage, resulting in significant peak position errors. Moreover, thrust fluctuation due to the cogging effect, end effect, armature reaction, asymmetry of winding parameters, and time-varying electrical parameters will degrade the position-tracking precision at constant velocity. Thus, to avoid these impacts on position control accuracy, this paper proposes an improved anticipatory fractional-order iterative learning control (AFOILC), named the anticipatory lead fractional-order ILC (ALFOILC). ALFOILC is superior to the anticipatory &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;\rm {D}^\alpha&lt;/tex-math&gt;&lt;/inline-formula&gt;-type ILC (ADFOILC) regarding amplitude and phase compensation. Thus, ALFOILC increases the learnable band further. Moreover, this work analyzes the design, approximation, discretization, and tuning strategy for the decoupling parameters associated with ALFOILC. Finally, we build an experimental platform with an air-bearing PMLSM to validate the efficacy of ALFOILC through comparative experiments against ADFOILC and integer-order ILC.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2023.3290251</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4920-9481</orcidid><orcidid>https://orcid.org/0000-0002-6382-2891</orcidid><orcidid>https://orcid.org/0000-0002-6562-4530</orcidid><orcidid>https://orcid.org/0000-0003-0596-9454</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2024-06, Vol.71 (6), p.1-10
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_journals_2920289665
source IEEE Electronic Library (IEL)
subjects Acceleration
Convergence
Deceleration
Decoupling
Feedforward systems
Fluctuations
Industrial applications
iterative learning control (ILC)
Iterative methods
Lead
Learning
Parameters
Permanent magnet linear synchronous motor (PMLSM)
Permanent magnets
Position control
Position errors
Synchronous motors
Tracking
Tuning
two-degree-of-freedom (2-DOF) control
title Precise Position Control in Air-bearing PMLSM System Using An Improved Anticipatory Fractional-Order Iterative Learning Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T21%3A15%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Position%20Control%20in%20Air-bearing%20PMLSM%20System%20Using%20An%20Improved%20Anticipatory%20Fractional-Order%20Iterative%20Learning%20Control&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Wang,%20Mingyi&rft.date=2024-06-01&rft.volume=71&rft.issue=6&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2023.3290251&rft_dat=%3Cproquest_RIE%3E2920289665%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920289665&rft_id=info:pmid/&rft_ieee_id=10173736&rfr_iscdi=true