Influence of annealing temperature on corrosion inhibition and nanostructure of nitride Ni and Ni/Ti coatings on AISI stainless steel

The corrosion behaviour of Ni/(AISI 304) and Ni/Ti/(AISI 304) annealed at different temperatures (623 K to 1073 K) with flow of nitrogen gas is investigated in the 3.5 wt% (0.6 M) NaCl corroding medium. X-ray diffraction analysis of the samples confirmed formation of different phases of nickel nitri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2022-07, Vol.137 (7), p.839, Article 839
Hauptverfasser: Grayeli-Korpi, Ali-Reza, Bahari, Helma Sadat, Savaloni, Hadi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 839
container_title European physical journal plus
container_volume 137
creator Grayeli-Korpi, Ali-Reza
Bahari, Helma Sadat
Savaloni, Hadi
description The corrosion behaviour of Ni/(AISI 304) and Ni/Ti/(AISI 304) annealed at different temperatures (623 K to 1073 K) with flow of nitrogen gas is investigated in the 3.5 wt% (0.6 M) NaCl corroding medium. X-ray diffraction analysis of the samples confirmed formation of different phases of nickel nitride for Ni/(AISI 304) samples and nickel nitride and NiTi for the Ni/Ti/(AISI 304) samples depending on the annealing temperature. Surface morphology of the samples was obtained by means of atomic force microscopy from which average grain size, and the surface roughness values were obtained and their relationship with the corrosion results are discussed. Corrosion resistance of the samples was studied by the electrochemical impedance spectroscopy (EIS) and polarization measurements. The results showed highest corrosion resistance for both types of samples at a critical annealing temperature of 773 K. An improvement of 98 times for the Ni/Ti/(AISI 304) and 24 times for the Ni/(AISI 304) relative to the bare AISI 304 was obtained from the polarization results while the EIS analysis gives the enhancement factor of 90% for the Ni/Ti/(AISI 304) and 64% for the Ni/(AISI 304) samples annealed at 773 K temperature which is a high enhancement in particular in case of Ni/Ti/(AISI 304) sample. The equivalent circuits for both types of samples annealed at different temperatures were obtained, using the EIS data which showed strong dependence of the equivalent circuit elements on the surface morphology of the sample. The better performance of the former sample may be attributed to the reaction at the interfaces and to the presence of oxide particularly at the film grain boundaries as well as the thickness of this sample. Scanning electron microscope (SEM) and energy dispersive spectroscope (EDS) analyses of the samples also confirm these results. Graphical abstract
doi_str_mv 10.1140/epjp/s13360-022-03013-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920279233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920279233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c210t-1e77dcb4ff7c51418d4664e3a200425d88884f5aa73ad47388e6009b66ec35c43</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWGp_gwHXY_Oa17IUHwOlLqzrkGbu1JRpZkwyUH-A_9u0I-jOu8mBe84J90PolpJ7SgWZQ7_v555ynpGEMJYQTihPjhdowmhJklQIcflHX6OZ93sSR5RUlGKCvirbtANYDbhrsLIWVGvsDgc49OBUGFxcWKw75zpvojL23WxNOElla2yV7Xxwgx6dDbYmOFMDXpvzfm3mGxPjKsRWf6paVK8V9kEZ24L3UQG0N-iqUa2H2c87RW-PD5vlc7J6eaqWi1WiGSUhoZDntd6Kpsl1SgUtapFlArhi8SCW1kUc0aRK5VzVIudFARkh5TbLQPNUCz5Fd2Nv77qPAXyQ-25wNn4pWckIy0vGeXTlo0vHm72DRvbOHJT7lJTIE3Z5wi5H7DJil2fs8hiTxZj0MWF34H77_4t-Ax_fiys</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920279233</pqid></control><display><type>article</type><title>Influence of annealing temperature on corrosion inhibition and nanostructure of nitride Ni and Ni/Ti coatings on AISI stainless steel</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Grayeli-Korpi, Ali-Reza ; Bahari, Helma Sadat ; Savaloni, Hadi</creator><creatorcontrib>Grayeli-Korpi, Ali-Reza ; Bahari, Helma Sadat ; Savaloni, Hadi</creatorcontrib><description>The corrosion behaviour of Ni/(AISI 304) and Ni/Ti/(AISI 304) annealed at different temperatures (623 K to 1073 K) with flow of nitrogen gas is investigated in the 3.5 wt% (0.6 M) NaCl corroding medium. X-ray diffraction analysis of the samples confirmed formation of different phases of nickel nitride for Ni/(AISI 304) samples and nickel nitride and NiTi for the Ni/Ti/(AISI 304) samples depending on the annealing temperature. Surface morphology of the samples was obtained by means of atomic force microscopy from which average grain size, and the surface roughness values were obtained and their relationship with the corrosion results are discussed. Corrosion resistance of the samples was studied by the electrochemical impedance spectroscopy (EIS) and polarization measurements. The results showed highest corrosion resistance for both types of samples at a critical annealing temperature of 773 K. An improvement of 98 times for the Ni/Ti/(AISI 304) and 24 times for the Ni/(AISI 304) relative to the bare AISI 304 was obtained from the polarization results while the EIS analysis gives the enhancement factor of 90% for the Ni/Ti/(AISI 304) and 64% for the Ni/(AISI 304) samples annealed at 773 K temperature which is a high enhancement in particular in case of Ni/Ti/(AISI 304) sample. The equivalent circuits for both types of samples annealed at different temperatures were obtained, using the EIS data which showed strong dependence of the equivalent circuit elements on the surface morphology of the sample. The better performance of the former sample may be attributed to the reaction at the interfaces and to the presence of oxide particularly at the film grain boundaries as well as the thickness of this sample. Scanning electron microscope (SEM) and energy dispersive spectroscope (EDS) analyses of the samples also confirm these results. Graphical abstract</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-022-03013-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Annealing ; Applied and Technical Physics ; Atomic ; Austenitic stainless steels ; Cathodic protection ; Complex Systems ; Condensed Matter Physics ; Corrosion ; Corrosion resistance ; Corrosion resistant steels ; Corrosion tests ; Electrochemical impedance spectroscopy ; Electrochemistry ; Equivalent circuits ; Grain boundaries ; Grain size ; Mathematical and Computational Physics ; Metals ; Microscopy ; Molecular ; Morphology ; Nickel ; Nickel compounds ; Nitrides ; Nitrogen ; Optical and Plasma Physics ; Oxidation ; Physics ; Physics and Astronomy ; Polarization ; Regular Article ; Silicon nitride ; Sodium chloride ; Spectrum analysis ; Stainless steel ; Surface roughness ; Temperature ; Theoretical ; Titanium compounds ; X-ray diffraction</subject><ispartof>European physical journal plus, 2022-07, Vol.137 (7), p.839, Article 839</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c210t-1e77dcb4ff7c51418d4664e3a200425d88884f5aa73ad47388e6009b66ec35c43</cites><orcidid>0000-0002-6836-106X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-022-03013-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920279233?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72341</link.rule.ids></links><search><creatorcontrib>Grayeli-Korpi, Ali-Reza</creatorcontrib><creatorcontrib>Bahari, Helma Sadat</creatorcontrib><creatorcontrib>Savaloni, Hadi</creatorcontrib><title>Influence of annealing temperature on corrosion inhibition and nanostructure of nitride Ni and Ni/Ti coatings on AISI stainless steel</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The corrosion behaviour of Ni/(AISI 304) and Ni/Ti/(AISI 304) annealed at different temperatures (623 K to 1073 K) with flow of nitrogen gas is investigated in the 3.5 wt% (0.6 M) NaCl corroding medium. X-ray diffraction analysis of the samples confirmed formation of different phases of nickel nitride for Ni/(AISI 304) samples and nickel nitride and NiTi for the Ni/Ti/(AISI 304) samples depending on the annealing temperature. Surface morphology of the samples was obtained by means of atomic force microscopy from which average grain size, and the surface roughness values were obtained and their relationship with the corrosion results are discussed. Corrosion resistance of the samples was studied by the electrochemical impedance spectroscopy (EIS) and polarization measurements. The results showed highest corrosion resistance for both types of samples at a critical annealing temperature of 773 K. An improvement of 98 times for the Ni/Ti/(AISI 304) and 24 times for the Ni/(AISI 304) relative to the bare AISI 304 was obtained from the polarization results while the EIS analysis gives the enhancement factor of 90% for the Ni/Ti/(AISI 304) and 64% for the Ni/(AISI 304) samples annealed at 773 K temperature which is a high enhancement in particular in case of Ni/Ti/(AISI 304) sample. The equivalent circuits for both types of samples annealed at different temperatures were obtained, using the EIS data which showed strong dependence of the equivalent circuit elements on the surface morphology of the sample. The better performance of the former sample may be attributed to the reaction at the interfaces and to the presence of oxide particularly at the film grain boundaries as well as the thickness of this sample. Scanning electron microscope (SEM) and energy dispersive spectroscope (EDS) analyses of the samples also confirm these results. Graphical abstract</description><subject>Annealing</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Austenitic stainless steels</subject><subject>Cathodic protection</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Corrosion</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant steels</subject><subject>Corrosion tests</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Equivalent circuits</subject><subject>Grain boundaries</subject><subject>Grain size</subject><subject>Mathematical and Computational Physics</subject><subject>Metals</subject><subject>Microscopy</subject><subject>Molecular</subject><subject>Morphology</subject><subject>Nickel</subject><subject>Nickel compounds</subject><subject>Nitrides</subject><subject>Nitrogen</subject><subject>Optical and Plasma Physics</subject><subject>Oxidation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarization</subject><subject>Regular Article</subject><subject>Silicon nitride</subject><subject>Sodium chloride</subject><subject>Spectrum analysis</subject><subject>Stainless steel</subject><subject>Surface roughness</subject><subject>Temperature</subject><subject>Theoretical</subject><subject>Titanium compounds</subject><subject>X-ray diffraction</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkEtLAzEUhYMoWGp_gwHXY_Oa17IUHwOlLqzrkGbu1JRpZkwyUH-A_9u0I-jOu8mBe84J90PolpJ7SgWZQ7_v555ynpGEMJYQTihPjhdowmhJklQIcflHX6OZ93sSR5RUlGKCvirbtANYDbhrsLIWVGvsDgc49OBUGFxcWKw75zpvojL23WxNOElla2yV7Xxwgx6dDbYmOFMDXpvzfm3mGxPjKsRWf6paVK8V9kEZ24L3UQG0N-iqUa2H2c87RW-PD5vlc7J6eaqWi1WiGSUhoZDntd6Kpsl1SgUtapFlArhi8SCW1kUc0aRK5VzVIudFARkh5TbLQPNUCz5Fd2Nv77qPAXyQ-25wNn4pWckIy0vGeXTlo0vHm72DRvbOHJT7lJTIE3Z5wi5H7DJil2fs8hiTxZj0MWF34H77_4t-Ax_fiys</recordid><startdate>20220720</startdate><enddate>20220720</enddate><creator>Grayeli-Korpi, Ali-Reza</creator><creator>Bahari, Helma Sadat</creator><creator>Savaloni, Hadi</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-6836-106X</orcidid></search><sort><creationdate>20220720</creationdate><title>Influence of annealing temperature on corrosion inhibition and nanostructure of nitride Ni and Ni/Ti coatings on AISI stainless steel</title><author>Grayeli-Korpi, Ali-Reza ; Bahari, Helma Sadat ; Savaloni, Hadi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c210t-1e77dcb4ff7c51418d4664e3a200425d88884f5aa73ad47388e6009b66ec35c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annealing</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Austenitic stainless steels</topic><topic>Cathodic protection</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Corrosion</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant steels</topic><topic>Corrosion tests</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Equivalent circuits</topic><topic>Grain boundaries</topic><topic>Grain size</topic><topic>Mathematical and Computational Physics</topic><topic>Metals</topic><topic>Microscopy</topic><topic>Molecular</topic><topic>Morphology</topic><topic>Nickel</topic><topic>Nickel compounds</topic><topic>Nitrides</topic><topic>Nitrogen</topic><topic>Optical and Plasma Physics</topic><topic>Oxidation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarization</topic><topic>Regular Article</topic><topic>Silicon nitride</topic><topic>Sodium chloride</topic><topic>Spectrum analysis</topic><topic>Stainless steel</topic><topic>Surface roughness</topic><topic>Temperature</topic><topic>Theoretical</topic><topic>Titanium compounds</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grayeli-Korpi, Ali-Reza</creatorcontrib><creatorcontrib>Bahari, Helma Sadat</creatorcontrib><creatorcontrib>Savaloni, Hadi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grayeli-Korpi, Ali-Reza</au><au>Bahari, Helma Sadat</au><au>Savaloni, Hadi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of annealing temperature on corrosion inhibition and nanostructure of nitride Ni and Ni/Ti coatings on AISI stainless steel</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2022-07-20</date><risdate>2022</risdate><volume>137</volume><issue>7</issue><spage>839</spage><pages>839-</pages><artnum>839</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The corrosion behaviour of Ni/(AISI 304) and Ni/Ti/(AISI 304) annealed at different temperatures (623 K to 1073 K) with flow of nitrogen gas is investigated in the 3.5 wt% (0.6 M) NaCl corroding medium. X-ray diffraction analysis of the samples confirmed formation of different phases of nickel nitride for Ni/(AISI 304) samples and nickel nitride and NiTi for the Ni/Ti/(AISI 304) samples depending on the annealing temperature. Surface morphology of the samples was obtained by means of atomic force microscopy from which average grain size, and the surface roughness values were obtained and their relationship with the corrosion results are discussed. Corrosion resistance of the samples was studied by the electrochemical impedance spectroscopy (EIS) and polarization measurements. The results showed highest corrosion resistance for both types of samples at a critical annealing temperature of 773 K. An improvement of 98 times for the Ni/Ti/(AISI 304) and 24 times for the Ni/(AISI 304) relative to the bare AISI 304 was obtained from the polarization results while the EIS analysis gives the enhancement factor of 90% for the Ni/Ti/(AISI 304) and 64% for the Ni/(AISI 304) samples annealed at 773 K temperature which is a high enhancement in particular in case of Ni/Ti/(AISI 304) sample. The equivalent circuits for both types of samples annealed at different temperatures were obtained, using the EIS data which showed strong dependence of the equivalent circuit elements on the surface morphology of the sample. The better performance of the former sample may be attributed to the reaction at the interfaces and to the presence of oxide particularly at the film grain boundaries as well as the thickness of this sample. Scanning electron microscope (SEM) and energy dispersive spectroscope (EDS) analyses of the samples also confirm these results. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-022-03013-x</doi><orcidid>https://orcid.org/0000-0002-6836-106X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2022-07, Vol.137 (7), p.839, Article 839
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2920279233
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Annealing
Applied and Technical Physics
Atomic
Austenitic stainless steels
Cathodic protection
Complex Systems
Condensed Matter Physics
Corrosion
Corrosion resistance
Corrosion resistant steels
Corrosion tests
Electrochemical impedance spectroscopy
Electrochemistry
Equivalent circuits
Grain boundaries
Grain size
Mathematical and Computational Physics
Metals
Microscopy
Molecular
Morphology
Nickel
Nickel compounds
Nitrides
Nitrogen
Optical and Plasma Physics
Oxidation
Physics
Physics and Astronomy
Polarization
Regular Article
Silicon nitride
Sodium chloride
Spectrum analysis
Stainless steel
Surface roughness
Temperature
Theoretical
Titanium compounds
X-ray diffraction
title Influence of annealing temperature on corrosion inhibition and nanostructure of nitride Ni and Ni/Ti coatings on AISI stainless steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A31%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20annealing%20temperature%20on%20corrosion%20inhibition%20and%20nanostructure%20of%20nitride%20Ni%20and%20Ni/Ti%20coatings%20on%20AISI%20stainless%20steel&rft.jtitle=European%20physical%20journal%20plus&rft.au=Grayeli-Korpi,%20Ali-Reza&rft.date=2022-07-20&rft.volume=137&rft.issue=7&rft.spage=839&rft.pages=839-&rft.artnum=839&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-022-03013-x&rft_dat=%3Cproquest_cross%3E2920279233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920279233&rft_id=info:pmid/&rfr_iscdi=true