A technical view on neural architecture search
Due to the discovery of innovative and practical neural architectures, deep learning has achieved bright successes in many fields, such as computer vision, natural language processing, recommendation systems, etc. To reach high performance, researchers have to adjust neural architectures and choose...
Gespeichert in:
Veröffentlicht in: | International journal of machine learning and cybernetics 2020-04, Vol.11 (4), p.795-811 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 811 |
---|---|
container_issue | 4 |
container_start_page | 795 |
container_title | International journal of machine learning and cybernetics |
container_volume | 11 |
creator | Hu, Yi-Qi Yu, Yang |
description | Due to the discovery of innovative and practical neural architectures, deep learning has achieved bright successes in many fields, such as computer vision, natural language processing, recommendation systems, etc. To reach high performance, researchers have to adjust neural architectures and choose training tricks very carefully. The manual trial-and-error process for discovering the best neural network configuration consumes plenty of manpower. The neural architecture search (NAS) aims to alleviate this issue by automatically configuring neural networks. Recently, the rapid development of NAS has shown significant achievements. Novel neural network architectures that outperform the state-of-the-art handcrafted networks have been discovered in image classification benchmarks. In this paper, we survey NAS from a technical view. By summarizing the previous NAS approaches, we drew a picture of NAS for readers including problem definition, search approaches, progress towards practical applications and possible future directions. We hope that this paper can help beginners start their researches on NAS. |
doi_str_mv | 10.1007/s13042-020-01062-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920275727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920275727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-6c5c584e81aa9e3a9e44c3aded8e6bcaa3551f81ac6524046aa50e6b884cfd9e3</originalsourceid><addsrcrecordid>eNp9UEtLw0AQXkTBUvsHPAU8b519ZnssxRcUvCh4W9bNxKbUpO4miv_eqRG9OTDMDN9j4GPsXMBcAJSXWSjQkoMEDgKs5OKITYSzjjtwT8e_eylO2SznLVBZUArkhM2XRY9x0zYx7Ir3Bj-Kri1aHBKdIcVNQ2g_JCwyHs4zdlKHXcbZz5yyx-urh9UtX9_f3K2Wax5VKXtuo4nGaXQihAUqaq2jChVWDu1zDEEZI2pCozVSg7YhGCDEOR3rihRTdjH67lP3NmDu_bYbUksvvVxIkKUpZUksObJi6nJOWPt9al5D-vQC_CEaP0bjKRr_HY0XJFKjKBO5fcH0Z_2P6gtLbWWD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920275727</pqid></control><display><type>article</type><title>A technical view on neural architecture search</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Hu, Yi-Qi ; Yu, Yang</creator><creatorcontrib>Hu, Yi-Qi ; Yu, Yang</creatorcontrib><description>Due to the discovery of innovative and practical neural architectures, deep learning has achieved bright successes in many fields, such as computer vision, natural language processing, recommendation systems, etc. To reach high performance, researchers have to adjust neural architectures and choose training tricks very carefully. The manual trial-and-error process for discovering the best neural network configuration consumes plenty of manpower. The neural architecture search (NAS) aims to alleviate this issue by automatically configuring neural networks. Recently, the rapid development of NAS has shown significant achievements. Novel neural network architectures that outperform the state-of-the-art handcrafted networks have been discovered in image classification benchmarks. In this paper, we survey NAS from a technical view. By summarizing the previous NAS approaches, we drew a picture of NAS for readers including problem definition, search approaches, progress towards practical applications and possible future directions. We hope that this paper can help beginners start their researches on NAS.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-020-01062-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Classification ; Complex Systems ; Computational Intelligence ; Computer vision ; Control ; Deep learning ; Design ; Efficiency ; Engineering ; Genetic algorithms ; Image classification ; Machine learning ; Mechatronics ; Natural language processing ; Neural networks ; Optimization ; Original Article ; Pattern Recognition ; Recommender systems ; Robotics ; Searching ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2020-04, Vol.11 (4), p.795-811</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-6c5c584e81aa9e3a9e44c3aded8e6bcaa3551f81ac6524046aa50e6b884cfd9e3</citedby><cites>FETCH-LOGICAL-c372t-6c5c584e81aa9e3a9e44c3aded8e6bcaa3551f81ac6524046aa50e6b884cfd9e3</cites><orcidid>0000-0002-7689-291X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-020-01062-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920275727?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Hu, Yi-Qi</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><title>A technical view on neural architecture search</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. & Cyber</addtitle><description>Due to the discovery of innovative and practical neural architectures, deep learning has achieved bright successes in many fields, such as computer vision, natural language processing, recommendation systems, etc. To reach high performance, researchers have to adjust neural architectures and choose training tricks very carefully. The manual trial-and-error process for discovering the best neural network configuration consumes plenty of manpower. The neural architecture search (NAS) aims to alleviate this issue by automatically configuring neural networks. Recently, the rapid development of NAS has shown significant achievements. Novel neural network architectures that outperform the state-of-the-art handcrafted networks have been discovered in image classification benchmarks. In this paper, we survey NAS from a technical view. By summarizing the previous NAS approaches, we drew a picture of NAS for readers including problem definition, search approaches, progress towards practical applications and possible future directions. We hope that this paper can help beginners start their researches on NAS.</description><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer vision</subject><subject>Control</subject><subject>Deep learning</subject><subject>Design</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Mechatronics</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Recommender systems</subject><subject>Robotics</subject><subject>Searching</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UEtLw0AQXkTBUvsHPAU8b519ZnssxRcUvCh4W9bNxKbUpO4miv_eqRG9OTDMDN9j4GPsXMBcAJSXWSjQkoMEDgKs5OKITYSzjjtwT8e_eylO2SznLVBZUArkhM2XRY9x0zYx7Ir3Bj-Kri1aHBKdIcVNQ2g_JCwyHs4zdlKHXcbZz5yyx-urh9UtX9_f3K2Wax5VKXtuo4nGaXQihAUqaq2jChVWDu1zDEEZI2pCozVSg7YhGCDEOR3rihRTdjH67lP3NmDu_bYbUksvvVxIkKUpZUksObJi6nJOWPt9al5D-vQC_CEaP0bjKRr_HY0XJFKjKBO5fcH0Z_2P6gtLbWWD</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Hu, Yi-Qi</creator><creator>Yu, Yang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7689-291X</orcidid></search><sort><creationdate>20200401</creationdate><title>A technical view on neural architecture search</title><author>Hu, Yi-Qi ; Yu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-6c5c584e81aa9e3a9e44c3aded8e6bcaa3551f81ac6524046aa50e6b884cfd9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer vision</topic><topic>Control</topic><topic>Deep learning</topic><topic>Design</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Mechatronics</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Recommender systems</topic><topic>Robotics</topic><topic>Searching</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yi-Qi</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yi-Qi</au><au>Yu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A technical view on neural architecture search</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. & Cyber</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>11</volume><issue>4</issue><spage>795</spage><epage>811</epage><pages>795-811</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Due to the discovery of innovative and practical neural architectures, deep learning has achieved bright successes in many fields, such as computer vision, natural language processing, recommendation systems, etc. To reach high performance, researchers have to adjust neural architectures and choose training tricks very carefully. The manual trial-and-error process for discovering the best neural network configuration consumes plenty of manpower. The neural architecture search (NAS) aims to alleviate this issue by automatically configuring neural networks. Recently, the rapid development of NAS has shown significant achievements. Novel neural network architectures that outperform the state-of-the-art handcrafted networks have been discovered in image classification benchmarks. In this paper, we survey NAS from a technical view. By summarizing the previous NAS approaches, we drew a picture of NAS for readers including problem definition, search approaches, progress towards practical applications and possible future directions. We hope that this paper can help beginners start their researches on NAS.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-020-01062-1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7689-291X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-8071 |
ispartof | International journal of machine learning and cybernetics, 2020-04, Vol.11 (4), p.795-811 |
issn | 1868-8071 1868-808X |
language | eng |
recordid | cdi_proquest_journals_2920275727 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Artificial Intelligence Classification Complex Systems Computational Intelligence Computer vision Control Deep learning Design Efficiency Engineering Genetic algorithms Image classification Machine learning Mechatronics Natural language processing Neural networks Optimization Original Article Pattern Recognition Recommender systems Robotics Searching Systems Biology |
title | A technical view on neural architecture search |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20technical%20view%20on%20neural%20architecture%20search&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Hu,%20Yi-Qi&rft.date=2020-04-01&rft.volume=11&rft.issue=4&rft.spage=795&rft.epage=811&rft.pages=795-811&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-020-01062-1&rft_dat=%3Cproquest_cross%3E2920275727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920275727&rft_id=info:pmid/&rfr_iscdi=true |