A technical view on neural architecture search

Due to the discovery of innovative and practical neural architectures, deep learning has achieved bright successes in many fields, such as computer vision, natural language processing, recommendation systems, etc. To reach high performance, researchers have to adjust neural architectures and choose...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2020-04, Vol.11 (4), p.795-811
Hauptverfasser: Hu, Yi-Qi, Yu, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 811
container_issue 4
container_start_page 795
container_title International journal of machine learning and cybernetics
container_volume 11
creator Hu, Yi-Qi
Yu, Yang
description Due to the discovery of innovative and practical neural architectures, deep learning has achieved bright successes in many fields, such as computer vision, natural language processing, recommendation systems, etc. To reach high performance, researchers have to adjust neural architectures and choose training tricks very carefully. The manual trial-and-error process for discovering the best neural network configuration consumes plenty of manpower. The neural architecture search (NAS) aims to alleviate this issue by automatically configuring neural networks. Recently, the rapid development of NAS has shown significant achievements. Novel neural network architectures that outperform the state-of-the-art handcrafted networks have been discovered in image classification benchmarks. In this paper, we survey NAS from a technical view. By summarizing the previous NAS approaches, we drew a picture of NAS for readers including problem definition, search approaches, progress towards practical applications and possible future directions. We hope that this paper can help beginners start their researches on NAS.
doi_str_mv 10.1007/s13042-020-01062-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920275727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920275727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-6c5c584e81aa9e3a9e44c3aded8e6bcaa3551f81ac6524046aa50e6b884cfd9e3</originalsourceid><addsrcrecordid>eNp9UEtLw0AQXkTBUvsHPAU8b519ZnssxRcUvCh4W9bNxKbUpO4miv_eqRG9OTDMDN9j4GPsXMBcAJSXWSjQkoMEDgKs5OKITYSzjjtwT8e_eylO2SznLVBZUArkhM2XRY9x0zYx7Ir3Bj-Kri1aHBKdIcVNQ2g_JCwyHs4zdlKHXcbZz5yyx-urh9UtX9_f3K2Wax5VKXtuo4nGaXQihAUqaq2jChVWDu1zDEEZI2pCozVSg7YhGCDEOR3rihRTdjH67lP3NmDu_bYbUksvvVxIkKUpZUksObJi6nJOWPt9al5D-vQC_CEaP0bjKRr_HY0XJFKjKBO5fcH0Z_2P6gtLbWWD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920275727</pqid></control><display><type>article</type><title>A technical view on neural architecture search</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Hu, Yi-Qi ; Yu, Yang</creator><creatorcontrib>Hu, Yi-Qi ; Yu, Yang</creatorcontrib><description>Due to the discovery of innovative and practical neural architectures, deep learning has achieved bright successes in many fields, such as computer vision, natural language processing, recommendation systems, etc. To reach high performance, researchers have to adjust neural architectures and choose training tricks very carefully. The manual trial-and-error process for discovering the best neural network configuration consumes plenty of manpower. The neural architecture search (NAS) aims to alleviate this issue by automatically configuring neural networks. Recently, the rapid development of NAS has shown significant achievements. Novel neural network architectures that outperform the state-of-the-art handcrafted networks have been discovered in image classification benchmarks. In this paper, we survey NAS from a technical view. By summarizing the previous NAS approaches, we drew a picture of NAS for readers including problem definition, search approaches, progress towards practical applications and possible future directions. We hope that this paper can help beginners start their researches on NAS.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-020-01062-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Classification ; Complex Systems ; Computational Intelligence ; Computer vision ; Control ; Deep learning ; Design ; Efficiency ; Engineering ; Genetic algorithms ; Image classification ; Machine learning ; Mechatronics ; Natural language processing ; Neural networks ; Optimization ; Original Article ; Pattern Recognition ; Recommender systems ; Robotics ; Searching ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2020-04, Vol.11 (4), p.795-811</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-6c5c584e81aa9e3a9e44c3aded8e6bcaa3551f81ac6524046aa50e6b884cfd9e3</citedby><cites>FETCH-LOGICAL-c372t-6c5c584e81aa9e3a9e44c3aded8e6bcaa3551f81ac6524046aa50e6b884cfd9e3</cites><orcidid>0000-0002-7689-291X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-020-01062-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920275727?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Hu, Yi-Qi</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><title>A technical view on neural architecture search</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>Due to the discovery of innovative and practical neural architectures, deep learning has achieved bright successes in many fields, such as computer vision, natural language processing, recommendation systems, etc. To reach high performance, researchers have to adjust neural architectures and choose training tricks very carefully. The manual trial-and-error process for discovering the best neural network configuration consumes plenty of manpower. The neural architecture search (NAS) aims to alleviate this issue by automatically configuring neural networks. Recently, the rapid development of NAS has shown significant achievements. Novel neural network architectures that outperform the state-of-the-art handcrafted networks have been discovered in image classification benchmarks. In this paper, we survey NAS from a technical view. By summarizing the previous NAS approaches, we drew a picture of NAS for readers including problem definition, search approaches, progress towards practical applications and possible future directions. We hope that this paper can help beginners start their researches on NAS.</description><subject>Artificial Intelligence</subject><subject>Classification</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Computer vision</subject><subject>Control</subject><subject>Deep learning</subject><subject>Design</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Image classification</subject><subject>Machine learning</subject><subject>Mechatronics</subject><subject>Natural language processing</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Recommender systems</subject><subject>Robotics</subject><subject>Searching</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9UEtLw0AQXkTBUvsHPAU8b519ZnssxRcUvCh4W9bNxKbUpO4miv_eqRG9OTDMDN9j4GPsXMBcAJSXWSjQkoMEDgKs5OKITYSzjjtwT8e_eylO2SznLVBZUArkhM2XRY9x0zYx7Ir3Bj-Kri1aHBKdIcVNQ2g_JCwyHs4zdlKHXcbZz5yyx-urh9UtX9_f3K2Wax5VKXtuo4nGaXQihAUqaq2jChVWDu1zDEEZI2pCozVSg7YhGCDEOR3rihRTdjH67lP3NmDu_bYbUksvvVxIkKUpZUksObJi6nJOWPt9al5D-vQC_CEaP0bjKRr_HY0XJFKjKBO5fcH0Z_2P6gtLbWWD</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Hu, Yi-Qi</creator><creator>Yu, Yang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7689-291X</orcidid></search><sort><creationdate>20200401</creationdate><title>A technical view on neural architecture search</title><author>Hu, Yi-Qi ; Yu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-6c5c584e81aa9e3a9e44c3aded8e6bcaa3551f81ac6524046aa50e6b884cfd9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial Intelligence</topic><topic>Classification</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Computer vision</topic><topic>Control</topic><topic>Deep learning</topic><topic>Design</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Image classification</topic><topic>Machine learning</topic><topic>Mechatronics</topic><topic>Natural language processing</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Recommender systems</topic><topic>Robotics</topic><topic>Searching</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yi-Qi</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yi-Qi</au><au>Yu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A technical view on neural architecture search</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>11</volume><issue>4</issue><spage>795</spage><epage>811</epage><pages>795-811</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Due to the discovery of innovative and practical neural architectures, deep learning has achieved bright successes in many fields, such as computer vision, natural language processing, recommendation systems, etc. To reach high performance, researchers have to adjust neural architectures and choose training tricks very carefully. The manual trial-and-error process for discovering the best neural network configuration consumes plenty of manpower. The neural architecture search (NAS) aims to alleviate this issue by automatically configuring neural networks. Recently, the rapid development of NAS has shown significant achievements. Novel neural network architectures that outperform the state-of-the-art handcrafted networks have been discovered in image classification benchmarks. In this paper, we survey NAS from a technical view. By summarizing the previous NAS approaches, we drew a picture of NAS for readers including problem definition, search approaches, progress towards practical applications and possible future directions. We hope that this paper can help beginners start their researches on NAS.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-020-01062-1</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7689-291X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2020-04, Vol.11 (4), p.795-811
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_2920275727
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Artificial Intelligence
Classification
Complex Systems
Computational Intelligence
Computer vision
Control
Deep learning
Design
Efficiency
Engineering
Genetic algorithms
Image classification
Machine learning
Mechatronics
Natural language processing
Neural networks
Optimization
Original Article
Pattern Recognition
Recommender systems
Robotics
Searching
Systems Biology
title A technical view on neural architecture search
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20technical%20view%20on%20neural%20architecture%20search&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Hu,%20Yi-Qi&rft.date=2020-04-01&rft.volume=11&rft.issue=4&rft.spage=795&rft.epage=811&rft.pages=795-811&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-020-01062-1&rft_dat=%3Cproquest_cross%3E2920275727%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920275727&rft_id=info:pmid/&rfr_iscdi=true