Improved stochastic dissipativity of uncertain discrete-time neural networks with multiple delays and impulses

This paper investigates the problem of global dissipativity and global exponential dissipativity for a class of uncertain discrete-time stochastic neural networks with multiple time-varying delays. Here the multiple time-varying delays are assumed to be discrete and distributed and the uncertainties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2015-04, Vol.6 (2), p.289-305
Hauptverfasser: Raja, R., Karthik Raja, U., Samidurai, R., Leelamani, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue 2
container_start_page 289
container_title International journal of machine learning and cybernetics
container_volume 6
creator Raja, R.
Karthik Raja, U.
Samidurai, R.
Leelamani, A.
description This paper investigates the problem of global dissipativity and global exponential dissipativity for a class of uncertain discrete-time stochastic neural networks with multiple time-varying delays. Here the multiple time-varying delays are assumed to be discrete and distributed and the uncertainties are assumed to be time-varying norm-bounded parameter uncertainties. By choosing a novel Lyapunov functional, combining with linear matrix inequality technique (LMI), Jensen’s inequality and stochastic analysis method, a new delay-dependent global dissipativity criterion is obtained in the form of LMI, which can be easily verified numerically using the effective LMI toolbox in Matlab. One important feature presents in our paper is that without employing model transformation and free weighting matrices our obtained result leads to less conservatism. Two illustrative examples are given to show the usefulness of the obtained dissipativity conditions.
doi_str_mv 10.1007/s13042-013-0215-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920245374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920245374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-52b1d840aa64e2c3657029c167032cb9b222719d22abcb00591ec7c767d562903</originalsourceid><addsrcrecordid>eNp1UE1LAzEUXETBUvsDvAU8R19edje7Ryl-FApeFLyFbDa1qftlkm1pf70pFT35LjPwZubxJkmuGdwyAHHnGYcUKTBOAVlGD2fJhBV5QQso3s9_uWCXycz7DcTJgXPASdIt2sH1W1MTH3q9Vj5YTWrrvR1UsFsb9qRfkbHTxgVlu-NKOxMMDbY1pDOjU02EsOvdpyc7G9akHZtgh8aQ2jRq74nqamLbYWy88VfJxUpFMvvBafL2-PA6f6bLl6fF_H5JNWd5oBlWrC5SUCpPDWqeZwKw1CwXwFFXZYWIgpU1oqp0BZCVzGihRS7qLMcS-DS5OeXG575G44Pc9KPr4kmJJQKmGRdpVLGTSrvee2dWcnC2VW4vGchjs_LUrIzNymOz8hA9ePL4qO0-jPtL_t_0DSqdfXk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920245374</pqid></control><display><type>article</type><title>Improved stochastic dissipativity of uncertain discrete-time neural networks with multiple delays and impulses</title><source>ProQuest Central UK/Ireland</source><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Raja, R. ; Karthik Raja, U. ; Samidurai, R. ; Leelamani, A.</creator><creatorcontrib>Raja, R. ; Karthik Raja, U. ; Samidurai, R. ; Leelamani, A.</creatorcontrib><description>This paper investigates the problem of global dissipativity and global exponential dissipativity for a class of uncertain discrete-time stochastic neural networks with multiple time-varying delays. Here the multiple time-varying delays are assumed to be discrete and distributed and the uncertainties are assumed to be time-varying norm-bounded parameter uncertainties. By choosing a novel Lyapunov functional, combining with linear matrix inequality technique (LMI), Jensen’s inequality and stochastic analysis method, a new delay-dependent global dissipativity criterion is obtained in the form of LMI, which can be easily verified numerically using the effective LMI toolbox in Matlab. One important feature presents in our paper is that without employing model transformation and free weighting matrices our obtained result leads to less conservatism. Two illustrative examples are given to show the usefulness of the obtained dissipativity conditions.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-013-0215-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial Intelligence ; Complex Systems ; Computational Intelligence ; Control ; Dissipation ; Engineering ; Equilibrium ; Euclidean space ; Linear matrix inequalities ; Mechatronics ; Neural networks ; Numbers ; Original Article ; Parameter uncertainty ; Pattern Recognition ; Robotics ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2015-04, Vol.6 (2), p.289-305</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>Springer-Verlag Berlin Heidelberg 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-52b1d840aa64e2c3657029c167032cb9b222719d22abcb00591ec7c767d562903</citedby><cites>FETCH-LOGICAL-c316t-52b1d840aa64e2c3657029c167032cb9b222719d22abcb00591ec7c767d562903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-013-0215-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920245374?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21386,27922,27923,33742,41486,42555,43803,51317,64383,64387,72239</link.rule.ids></links><search><creatorcontrib>Raja, R.</creatorcontrib><creatorcontrib>Karthik Raja, U.</creatorcontrib><creatorcontrib>Samidurai, R.</creatorcontrib><creatorcontrib>Leelamani, A.</creatorcontrib><title>Improved stochastic dissipativity of uncertain discrete-time neural networks with multiple delays and impulses</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>This paper investigates the problem of global dissipativity and global exponential dissipativity for a class of uncertain discrete-time stochastic neural networks with multiple time-varying delays. Here the multiple time-varying delays are assumed to be discrete and distributed and the uncertainties are assumed to be time-varying norm-bounded parameter uncertainties. By choosing a novel Lyapunov functional, combining with linear matrix inequality technique (LMI), Jensen’s inequality and stochastic analysis method, a new delay-dependent global dissipativity criterion is obtained in the form of LMI, which can be easily verified numerically using the effective LMI toolbox in Matlab. One important feature presents in our paper is that without employing model transformation and free weighting matrices our obtained result leads to less conservatism. Two illustrative examples are given to show the usefulness of the obtained dissipativity conditions.</description><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Dissipation</subject><subject>Engineering</subject><subject>Equilibrium</subject><subject>Euclidean space</subject><subject>Linear matrix inequalities</subject><subject>Mechatronics</subject><subject>Neural networks</subject><subject>Numbers</subject><subject>Original Article</subject><subject>Parameter uncertainty</subject><subject>Pattern Recognition</subject><subject>Robotics</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UE1LAzEUXETBUvsDvAU8R19edje7Ryl-FApeFLyFbDa1qftlkm1pf70pFT35LjPwZubxJkmuGdwyAHHnGYcUKTBOAVlGD2fJhBV5QQso3s9_uWCXycz7DcTJgXPASdIt2sH1W1MTH3q9Vj5YTWrrvR1UsFsb9qRfkbHTxgVlu-NKOxMMDbY1pDOjU02EsOvdpyc7G9akHZtgh8aQ2jRq74nqamLbYWy88VfJxUpFMvvBafL2-PA6f6bLl6fF_H5JNWd5oBlWrC5SUCpPDWqeZwKw1CwXwFFXZYWIgpU1oqp0BZCVzGihRS7qLMcS-DS5OeXG575G44Pc9KPr4kmJJQKmGRdpVLGTSrvee2dWcnC2VW4vGchjs_LUrIzNymOz8hA9ePL4qO0-jPtL_t_0DSqdfXk</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Raja, R.</creator><creator>Karthik Raja, U.</creator><creator>Samidurai, R.</creator><creator>Leelamani, A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20150401</creationdate><title>Improved stochastic dissipativity of uncertain discrete-time neural networks with multiple delays and impulses</title><author>Raja, R. ; Karthik Raja, U. ; Samidurai, R. ; Leelamani, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-52b1d840aa64e2c3657029c167032cb9b222719d22abcb00591ec7c767d562903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Dissipation</topic><topic>Engineering</topic><topic>Equilibrium</topic><topic>Euclidean space</topic><topic>Linear matrix inequalities</topic><topic>Mechatronics</topic><topic>Neural networks</topic><topic>Numbers</topic><topic>Original Article</topic><topic>Parameter uncertainty</topic><topic>Pattern Recognition</topic><topic>Robotics</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raja, R.</creatorcontrib><creatorcontrib>Karthik Raja, U.</creatorcontrib><creatorcontrib>Samidurai, R.</creatorcontrib><creatorcontrib>Leelamani, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raja, R.</au><au>Karthik Raja, U.</au><au>Samidurai, R.</au><au>Leelamani, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved stochastic dissipativity of uncertain discrete-time neural networks with multiple delays and impulses</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>6</volume><issue>2</issue><spage>289</spage><epage>305</epage><pages>289-305</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>This paper investigates the problem of global dissipativity and global exponential dissipativity for a class of uncertain discrete-time stochastic neural networks with multiple time-varying delays. Here the multiple time-varying delays are assumed to be discrete and distributed and the uncertainties are assumed to be time-varying norm-bounded parameter uncertainties. By choosing a novel Lyapunov functional, combining with linear matrix inequality technique (LMI), Jensen’s inequality and stochastic analysis method, a new delay-dependent global dissipativity criterion is obtained in the form of LMI, which can be easily verified numerically using the effective LMI toolbox in Matlab. One important feature presents in our paper is that without employing model transformation and free weighting matrices our obtained result leads to less conservatism. Two illustrative examples are given to show the usefulness of the obtained dissipativity conditions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-013-0215-z</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2015-04, Vol.6 (2), p.289-305
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_2920245374
source ProQuest Central UK/Ireland; SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Artificial Intelligence
Complex Systems
Computational Intelligence
Control
Dissipation
Engineering
Equilibrium
Euclidean space
Linear matrix inequalities
Mechatronics
Neural networks
Numbers
Original Article
Parameter uncertainty
Pattern Recognition
Robotics
Systems Biology
title Improved stochastic dissipativity of uncertain discrete-time neural networks with multiple delays and impulses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A47%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20stochastic%20dissipativity%20of%20uncertain%20discrete-time%20neural%20networks%20with%20multiple%20delays%20and%20impulses&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Raja,%20R.&rft.date=2015-04-01&rft.volume=6&rft.issue=2&rft.spage=289&rft.epage=305&rft.pages=289-305&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-013-0215-z&rft_dat=%3Cproquest_cross%3E2920245374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920245374&rft_id=info:pmid/&rfr_iscdi=true