Knowledge granularity based incremental attribute reduction for incomplete decision systems
Attribute reduction is an important application of rough set theory. With the dynamic changes of data becoming more and more common, traditional attribute reduction, also called static attribute reduction, is no longer efficient. How to update attribute reducts efficiently gets more and more attenti...
Gespeichert in:
Veröffentlicht in: | International journal of machine learning and cybernetics 2020-05, Vol.11 (5), p.1141-1157 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1157 |
---|---|
container_issue | 5 |
container_start_page | 1141 |
container_title | International journal of machine learning and cybernetics |
container_volume | 11 |
creator | Zhang, Chucai Dai, Jianhua Chen, Jiaolong |
description | Attribute reduction is an important application of rough set theory. With the dynamic changes of data becoming more and more common, traditional attribute reduction, also called static attribute reduction, is no longer efficient. How to update attribute reducts efficiently gets more and more attention. In the light of the variation about the number of objects, we focus on incremental attribute reduction approaches based on knowledge granularity which can be used to measure the uncertainty in incomplete decision systems. We first introduce incremental mechanisms to calculate knowledge granularity for incomplete decision systems when multiple objects vary dynamically. Then, incremental attribute reduction algorithms for incomplete decision systems when adding multiple objects and when deleting multiple objects are proposed respectively. Finally, comparative experiments on different real-life data sets are conducted to demonstrate the effectiveness and efficiency of the proposed incremental algorithms for updating attribute reducts with the variation of multiple objects in incomplete decision systems. |
doi_str_mv | 10.1007/s13042-020-01089-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920242091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920242091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6fce983b71796c1272e8cc103566e8db731df034c003721e0fe25a52602bff573</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouKz7BTwVPFcnSZukR1n8h4IXBcFDSNPJ0qVt1iRF9tvbtaI35zLDzO-9gUfIOYVLCiCvIuVQsBwY5EBBVXlxRBZUCZUrUG_Hv7Okp2QV4xamEsA5sAV5fxz8Z4fNBrNNMMPYmdCmfVabiE3WDjZgj0MyXWZSCm09JswCNqNNrR8y58OB8f2uw-nQoG3jYR_3MWEfz8iJM13E1U9fktfbm5f1ff70fPewvn7KLadVyoWzWCleSyorYSmTDJW1FHgpBKqmlpw2DnhhAbhkFMEhK03JBLDauVLyJbmYfXfBf4wYk976MQzTS80qBqxgUNGJYjNlg48xoNO70PYm7DUFfchRzznqKUf9naMuJhGfRXGChw2GP-t_VF9TX3Z-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920242091</pqid></control><display><type>article</type><title>Knowledge granularity based incremental attribute reduction for incomplete decision systems</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Zhang, Chucai ; Dai, Jianhua ; Chen, Jiaolong</creator><creatorcontrib>Zhang, Chucai ; Dai, Jianhua ; Chen, Jiaolong</creatorcontrib><description>Attribute reduction is an important application of rough set theory. With the dynamic changes of data becoming more and more common, traditional attribute reduction, also called static attribute reduction, is no longer efficient. How to update attribute reducts efficiently gets more and more attention. In the light of the variation about the number of objects, we focus on incremental attribute reduction approaches based on knowledge granularity which can be used to measure the uncertainty in incomplete decision systems. We first introduce incremental mechanisms to calculate knowledge granularity for incomplete decision systems when multiple objects vary dynamically. Then, incremental attribute reduction algorithms for incomplete decision systems when adding multiple objects and when deleting multiple objects are proposed respectively. Finally, comparative experiments on different real-life data sets are conducted to demonstrate the effectiveness and efficiency of the proposed incremental algorithms for updating attribute reducts with the variation of multiple objects in incomplete decision systems.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-020-01089-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Approximation ; Artificial Intelligence ; Complex Systems ; Computational Intelligence ; Control ; Datasets ; Decision theory ; Engineering ; Entropy ; Feature selection ; Group dynamics ; Information systems ; Knowledge ; Mechatronics ; Original Article ; Pattern Recognition ; Reduction ; Robotics ; Set theory ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2020-05, Vol.11 (5), p.1141-1157</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6fce983b71796c1272e8cc103566e8db731df034c003721e0fe25a52602bff573</citedby><cites>FETCH-LOGICAL-c319t-6fce983b71796c1272e8cc103566e8db731df034c003721e0fe25a52602bff573</cites><orcidid>0000-0003-1459-0833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-020-01089-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920242091?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21377,27913,27914,33733,41477,42546,43794,51308,64372,64376,72228</link.rule.ids></links><search><creatorcontrib>Zhang, Chucai</creatorcontrib><creatorcontrib>Dai, Jianhua</creatorcontrib><creatorcontrib>Chen, Jiaolong</creatorcontrib><title>Knowledge granularity based incremental attribute reduction for incomplete decision systems</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. & Cyber</addtitle><description>Attribute reduction is an important application of rough set theory. With the dynamic changes of data becoming more and more common, traditional attribute reduction, also called static attribute reduction, is no longer efficient. How to update attribute reducts efficiently gets more and more attention. In the light of the variation about the number of objects, we focus on incremental attribute reduction approaches based on knowledge granularity which can be used to measure the uncertainty in incomplete decision systems. We first introduce incremental mechanisms to calculate knowledge granularity for incomplete decision systems when multiple objects vary dynamically. Then, incremental attribute reduction algorithms for incomplete decision systems when adding multiple objects and when deleting multiple objects are proposed respectively. Finally, comparative experiments on different real-life data sets are conducted to demonstrate the effectiveness and efficiency of the proposed incremental algorithms for updating attribute reducts with the variation of multiple objects in incomplete decision systems.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Datasets</subject><subject>Decision theory</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Feature selection</subject><subject>Group dynamics</subject><subject>Information systems</subject><subject>Knowledge</subject><subject>Mechatronics</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Reduction</subject><subject>Robotics</subject><subject>Set theory</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYMouKz7BTwVPFcnSZukR1n8h4IXBcFDSNPJ0qVt1iRF9tvbtaI35zLDzO-9gUfIOYVLCiCvIuVQsBwY5EBBVXlxRBZUCZUrUG_Hv7Okp2QV4xamEsA5sAV5fxz8Z4fNBrNNMMPYmdCmfVabiE3WDjZgj0MyXWZSCm09JswCNqNNrR8y58OB8f2uw-nQoG3jYR_3MWEfz8iJM13E1U9fktfbm5f1ff70fPewvn7KLadVyoWzWCleSyorYSmTDJW1FHgpBKqmlpw2DnhhAbhkFMEhK03JBLDauVLyJbmYfXfBf4wYk976MQzTS80qBqxgUNGJYjNlg48xoNO70PYm7DUFfchRzznqKUf9naMuJhGfRXGChw2GP-t_VF9TX3Z-</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Zhang, Chucai</creator><creator>Dai, Jianhua</creator><creator>Chen, Jiaolong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1459-0833</orcidid></search><sort><creationdate>20200501</creationdate><title>Knowledge granularity based incremental attribute reduction for incomplete decision systems</title><author>Zhang, Chucai ; Dai, Jianhua ; Chen, Jiaolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6fce983b71796c1272e8cc103566e8db731df034c003721e0fe25a52602bff573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Datasets</topic><topic>Decision theory</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Feature selection</topic><topic>Group dynamics</topic><topic>Information systems</topic><topic>Knowledge</topic><topic>Mechatronics</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Reduction</topic><topic>Robotics</topic><topic>Set theory</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chucai</creatorcontrib><creatorcontrib>Dai, Jianhua</creatorcontrib><creatorcontrib>Chen, Jiaolong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chucai</au><au>Dai, Jianhua</au><au>Chen, Jiaolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge granularity based incremental attribute reduction for incomplete decision systems</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. & Cyber</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>11</volume><issue>5</issue><spage>1141</spage><epage>1157</epage><pages>1141-1157</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Attribute reduction is an important application of rough set theory. With the dynamic changes of data becoming more and more common, traditional attribute reduction, also called static attribute reduction, is no longer efficient. How to update attribute reducts efficiently gets more and more attention. In the light of the variation about the number of objects, we focus on incremental attribute reduction approaches based on knowledge granularity which can be used to measure the uncertainty in incomplete decision systems. We first introduce incremental mechanisms to calculate knowledge granularity for incomplete decision systems when multiple objects vary dynamically. Then, incremental attribute reduction algorithms for incomplete decision systems when adding multiple objects and when deleting multiple objects are proposed respectively. Finally, comparative experiments on different real-life data sets are conducted to demonstrate the effectiveness and efficiency of the proposed incremental algorithms for updating attribute reducts with the variation of multiple objects in incomplete decision systems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-020-01089-4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1459-0833</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1868-8071 |
ispartof | International journal of machine learning and cybernetics, 2020-05, Vol.11 (5), p.1141-1157 |
issn | 1868-8071 1868-808X |
language | eng |
recordid | cdi_proquest_journals_2920242091 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Algorithms Approximation Artificial Intelligence Complex Systems Computational Intelligence Control Datasets Decision theory Engineering Entropy Feature selection Group dynamics Information systems Knowledge Mechatronics Original Article Pattern Recognition Reduction Robotics Set theory Systems Biology |
title | Knowledge granularity based incremental attribute reduction for incomplete decision systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20granularity%20based%20incremental%20attribute%20reduction%20for%20incomplete%20decision%20systems&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Zhang,%20Chucai&rft.date=2020-05-01&rft.volume=11&rft.issue=5&rft.spage=1141&rft.epage=1157&rft.pages=1141-1157&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-020-01089-4&rft_dat=%3Cproquest_cross%3E2920242091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920242091&rft_id=info:pmid/&rfr_iscdi=true |