Knowledge granularity based incremental attribute reduction for incomplete decision systems

Attribute reduction is an important application of rough set theory. With the dynamic changes of data becoming more and more common, traditional attribute reduction, also called static attribute reduction, is no longer efficient. How to update attribute reducts efficiently gets more and more attenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine learning and cybernetics 2020-05, Vol.11 (5), p.1141-1157
Hauptverfasser: Zhang, Chucai, Dai, Jianhua, Chen, Jiaolong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1157
container_issue 5
container_start_page 1141
container_title International journal of machine learning and cybernetics
container_volume 11
creator Zhang, Chucai
Dai, Jianhua
Chen, Jiaolong
description Attribute reduction is an important application of rough set theory. With the dynamic changes of data becoming more and more common, traditional attribute reduction, also called static attribute reduction, is no longer efficient. How to update attribute reducts efficiently gets more and more attention. In the light of the variation about the number of objects, we focus on incremental attribute reduction approaches based on knowledge granularity which can be used to measure the uncertainty in incomplete decision systems. We first introduce incremental mechanisms to calculate knowledge granularity for incomplete decision systems when multiple objects vary dynamically. Then, incremental attribute reduction algorithms for incomplete decision systems when adding multiple objects and when deleting multiple objects are proposed respectively. Finally, comparative experiments on different real-life data sets are conducted to demonstrate the effectiveness and efficiency of the proposed incremental algorithms for updating attribute reducts with the variation of multiple objects in incomplete decision systems.
doi_str_mv 10.1007/s13042-020-01089-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920242091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920242091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6fce983b71796c1272e8cc103566e8db731df034c003721e0fe25a52602bff573</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouKz7BTwVPFcnSZukR1n8h4IXBcFDSNPJ0qVt1iRF9tvbtaI35zLDzO-9gUfIOYVLCiCvIuVQsBwY5EBBVXlxRBZUCZUrUG_Hv7Okp2QV4xamEsA5sAV5fxz8Z4fNBrNNMMPYmdCmfVabiE3WDjZgj0MyXWZSCm09JswCNqNNrR8y58OB8f2uw-nQoG3jYR_3MWEfz8iJM13E1U9fktfbm5f1ff70fPewvn7KLadVyoWzWCleSyorYSmTDJW1FHgpBKqmlpw2DnhhAbhkFMEhK03JBLDauVLyJbmYfXfBf4wYk976MQzTS80qBqxgUNGJYjNlg48xoNO70PYm7DUFfchRzznqKUf9naMuJhGfRXGChw2GP-t_VF9TX3Z-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920242091</pqid></control><display><type>article</type><title>Knowledge granularity based incremental attribute reduction for incomplete decision systems</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Zhang, Chucai ; Dai, Jianhua ; Chen, Jiaolong</creator><creatorcontrib>Zhang, Chucai ; Dai, Jianhua ; Chen, Jiaolong</creatorcontrib><description>Attribute reduction is an important application of rough set theory. With the dynamic changes of data becoming more and more common, traditional attribute reduction, also called static attribute reduction, is no longer efficient. How to update attribute reducts efficiently gets more and more attention. In the light of the variation about the number of objects, we focus on incremental attribute reduction approaches based on knowledge granularity which can be used to measure the uncertainty in incomplete decision systems. We first introduce incremental mechanisms to calculate knowledge granularity for incomplete decision systems when multiple objects vary dynamically. Then, incremental attribute reduction algorithms for incomplete decision systems when adding multiple objects and when deleting multiple objects are proposed respectively. Finally, comparative experiments on different real-life data sets are conducted to demonstrate the effectiveness and efficiency of the proposed incremental algorithms for updating attribute reducts with the variation of multiple objects in incomplete decision systems.</description><identifier>ISSN: 1868-8071</identifier><identifier>EISSN: 1868-808X</identifier><identifier>DOI: 10.1007/s13042-020-01089-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Approximation ; Artificial Intelligence ; Complex Systems ; Computational Intelligence ; Control ; Datasets ; Decision theory ; Engineering ; Entropy ; Feature selection ; Group dynamics ; Information systems ; Knowledge ; Mechatronics ; Original Article ; Pattern Recognition ; Reduction ; Robotics ; Set theory ; Systems Biology</subject><ispartof>International journal of machine learning and cybernetics, 2020-05, Vol.11 (5), p.1141-1157</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6fce983b71796c1272e8cc103566e8db731df034c003721e0fe25a52602bff573</citedby><cites>FETCH-LOGICAL-c319t-6fce983b71796c1272e8cc103566e8db731df034c003721e0fe25a52602bff573</cites><orcidid>0000-0003-1459-0833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13042-020-01089-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920242091?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,778,782,21377,27913,27914,33733,41477,42546,43794,51308,64372,64376,72228</link.rule.ids></links><search><creatorcontrib>Zhang, Chucai</creatorcontrib><creatorcontrib>Dai, Jianhua</creatorcontrib><creatorcontrib>Chen, Jiaolong</creatorcontrib><title>Knowledge granularity based incremental attribute reduction for incomplete decision systems</title><title>International journal of machine learning and cybernetics</title><addtitle>Int. J. Mach. Learn. &amp; Cyber</addtitle><description>Attribute reduction is an important application of rough set theory. With the dynamic changes of data becoming more and more common, traditional attribute reduction, also called static attribute reduction, is no longer efficient. How to update attribute reducts efficiently gets more and more attention. In the light of the variation about the number of objects, we focus on incremental attribute reduction approaches based on knowledge granularity which can be used to measure the uncertainty in incomplete decision systems. We first introduce incremental mechanisms to calculate knowledge granularity for incomplete decision systems when multiple objects vary dynamically. Then, incremental attribute reduction algorithms for incomplete decision systems when adding multiple objects and when deleting multiple objects are proposed respectively. Finally, comparative experiments on different real-life data sets are conducted to demonstrate the effectiveness and efficiency of the proposed incremental algorithms for updating attribute reducts with the variation of multiple objects in incomplete decision systems.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Complex Systems</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Datasets</subject><subject>Decision theory</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Feature selection</subject><subject>Group dynamics</subject><subject>Information systems</subject><subject>Knowledge</subject><subject>Mechatronics</subject><subject>Original Article</subject><subject>Pattern Recognition</subject><subject>Reduction</subject><subject>Robotics</subject><subject>Set theory</subject><subject>Systems Biology</subject><issn>1868-8071</issn><issn>1868-808X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LxDAQxYMouKz7BTwVPFcnSZukR1n8h4IXBcFDSNPJ0qVt1iRF9tvbtaI35zLDzO-9gUfIOYVLCiCvIuVQsBwY5EBBVXlxRBZUCZUrUG_Hv7Okp2QV4xamEsA5sAV5fxz8Z4fNBrNNMMPYmdCmfVabiE3WDjZgj0MyXWZSCm09JswCNqNNrR8y58OB8f2uw-nQoG3jYR_3MWEfz8iJM13E1U9fktfbm5f1ff70fPewvn7KLadVyoWzWCleSyorYSmTDJW1FHgpBKqmlpw2DnhhAbhkFMEhK03JBLDauVLyJbmYfXfBf4wYk976MQzTS80qBqxgUNGJYjNlg48xoNO70PYm7DUFfchRzznqKUf9naMuJhGfRXGChw2GP-t_VF9TX3Z-</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Zhang, Chucai</creator><creator>Dai, Jianhua</creator><creator>Chen, Jiaolong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1459-0833</orcidid></search><sort><creationdate>20200501</creationdate><title>Knowledge granularity based incremental attribute reduction for incomplete decision systems</title><author>Zhang, Chucai ; Dai, Jianhua ; Chen, Jiaolong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6fce983b71796c1272e8cc103566e8db731df034c003721e0fe25a52602bff573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Complex Systems</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Datasets</topic><topic>Decision theory</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Feature selection</topic><topic>Group dynamics</topic><topic>Information systems</topic><topic>Knowledge</topic><topic>Mechatronics</topic><topic>Original Article</topic><topic>Pattern Recognition</topic><topic>Reduction</topic><topic>Robotics</topic><topic>Set theory</topic><topic>Systems Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chucai</creatorcontrib><creatorcontrib>Dai, Jianhua</creatorcontrib><creatorcontrib>Chen, Jiaolong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of machine learning and cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chucai</au><au>Dai, Jianhua</au><au>Chen, Jiaolong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge granularity based incremental attribute reduction for incomplete decision systems</atitle><jtitle>International journal of machine learning and cybernetics</jtitle><stitle>Int. J. Mach. Learn. &amp; Cyber</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>11</volume><issue>5</issue><spage>1141</spage><epage>1157</epage><pages>1141-1157</pages><issn>1868-8071</issn><eissn>1868-808X</eissn><abstract>Attribute reduction is an important application of rough set theory. With the dynamic changes of data becoming more and more common, traditional attribute reduction, also called static attribute reduction, is no longer efficient. How to update attribute reducts efficiently gets more and more attention. In the light of the variation about the number of objects, we focus on incremental attribute reduction approaches based on knowledge granularity which can be used to measure the uncertainty in incomplete decision systems. We first introduce incremental mechanisms to calculate knowledge granularity for incomplete decision systems when multiple objects vary dynamically. Then, incremental attribute reduction algorithms for incomplete decision systems when adding multiple objects and when deleting multiple objects are proposed respectively. Finally, comparative experiments on different real-life data sets are conducted to demonstrate the effectiveness and efficiency of the proposed incremental algorithms for updating attribute reducts with the variation of multiple objects in incomplete decision systems.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13042-020-01089-4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1459-0833</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1868-8071
ispartof International journal of machine learning and cybernetics, 2020-05, Vol.11 (5), p.1141-1157
issn 1868-8071
1868-808X
language eng
recordid cdi_proquest_journals_2920242091
source Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Approximation
Artificial Intelligence
Complex Systems
Computational Intelligence
Control
Datasets
Decision theory
Engineering
Entropy
Feature selection
Group dynamics
Information systems
Knowledge
Mechatronics
Original Article
Pattern Recognition
Reduction
Robotics
Set theory
Systems Biology
title Knowledge granularity based incremental attribute reduction for incomplete decision systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20granularity%20based%20incremental%20attribute%20reduction%20for%20incomplete%20decision%20systems&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20cybernetics&rft.au=Zhang,%20Chucai&rft.date=2020-05-01&rft.volume=11&rft.issue=5&rft.spage=1141&rft.epage=1157&rft.pages=1141-1157&rft.issn=1868-8071&rft.eissn=1868-808X&rft_id=info:doi/10.1007/s13042-020-01089-4&rft_dat=%3Cproquest_cross%3E2920242091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920242091&rft_id=info:pmid/&rfr_iscdi=true