Particle-shape illustration via the Hamilton–Crosser and Yamada–Ota hybrid nanofluid flow models past a stretching cylinder

The current flow phenomena are described for the thermophysical behavior of nanoparticles due to the implementation of the Hamilton–Crosser hybrid nanofluid model through a stretching cylinder. Further, the Yamada–Ota hybrid nanofluid model is also described for cylindrical- and spherical-shaped nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European physical journal plus 2023-02, Vol.138 (2), p.183, Article 183
Hauptverfasser: Ratha, P. K., Tripathy, R. S., Mishra, S. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 183
container_title European physical journal plus
container_volume 138
creator Ratha, P. K.
Tripathy, R. S.
Mishra, S. R.
description The current flow phenomena are described for the thermophysical behavior of nanoparticles due to the implementation of the Hamilton–Crosser hybrid nanofluid model through a stretching cylinder. Further, the Yamada–Ota hybrid nanofluid model is also described for cylindrical- and spherical-shaped nanoparticles. Interpretation of inertial drag with thermal radiation and the use of homogenous and heterogeneous chemical reaction enhance the study as well, and the utilization of hybrid nanofluid is crucial due to the recent requirement for industrial applications and in many fields of biological, engineering sciences, etc. Employing useful transformations, the governing equations are transformed into ordinary nonlinear equations, and further, these are solved numerically. The analysis of the various physical components that characterize the flow phenomena is obtained and presented through graphs. The behavior of these parameters is described briefly exhibiting their physical significance.
doi_str_mv 10.1140/epjp/s13360-023-03752-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920228342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920228342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-cb1f88fab8893f8154c8f2f6ba1433f2aeddf6bef4f0a6bfa87092bb2c98c0833</originalsourceid><addsrcrecordid>eNqFkM1KAzEQxxdRsNQ-gwHPa_O1bfYoRa0g6EEPnsJsNmlT0uyapEpP-g6-oU9iagW9OZf5YP7_YX5FcUrwOSEcj3W_6seRMDbBJaasxGxa0bI6KAaU1LisOOeHf-rjYhTjCufgNeE1HxRv9xCSVU6XcQm9Rta5TUwBku08erGA0lKjOaytS53_fP-YhS5GHRD4Fj3BGlrIw7sEaLltgm2RB98Zt8mVcd0rWnetdhH1EBMClI11UkvrF0htnfWtDifFkQEX9egnD4vHq8uH2by8vbu-mV3clooxnkrVECOEgUaImhlBKq6EoWbSAOGMGQq6bXOnDTcYJo0BMcU1bRqqaqGwYGxYnO19-9A9b3RMctVtgs8nJa0pplQwTvPWdL-ldm8GbWQf7BrCVhIsd8DlDrjcA5cZuPwGLqusFHtlzAq_0OHX_z_pF0HljIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920228342</pqid></control><display><type>article</type><title>Particle-shape illustration via the Hamilton–Crosser and Yamada–Ota hybrid nanofluid flow models past a stretching cylinder</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Ratha, P. K. ; Tripathy, R. S. ; Mishra, S. R.</creator><creatorcontrib>Ratha, P. K. ; Tripathy, R. S. ; Mishra, S. R.</creatorcontrib><description>The current flow phenomena are described for the thermophysical behavior of nanoparticles due to the implementation of the Hamilton–Crosser hybrid nanofluid model through a stretching cylinder. Further, the Yamada–Ota hybrid nanofluid model is also described for cylindrical- and spherical-shaped nanoparticles. Interpretation of inertial drag with thermal radiation and the use of homogenous and heterogeneous chemical reaction enhance the study as well, and the utilization of hybrid nanofluid is crucial due to the recent requirement for industrial applications and in many fields of biological, engineering sciences, etc. Employing useful transformations, the governing equations are transformed into ordinary nonlinear equations, and further, these are solved numerically. The analysis of the various physical components that characterize the flow phenomena is obtained and presented through graphs. The behavior of these parameters is described briefly exhibiting their physical significance.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-023-03752-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Chemical reactions ; Complex Systems ; Condensed Matter Physics ; Cylinders ; Entropy ; Flow velocity ; Fluid flow ; Heat conductivity ; Heat transfer ; Industrial applications ; Investigations ; Magnetic fields ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Nanofluids ; Nanoparticles ; Nonlinear equations ; Optical and Plasma Physics ; Performance evaluation ; Physics ; Physics and Astronomy ; Regular Article ; Stretching ; Theoretical ; Thermal radiation</subject><ispartof>European physical journal plus, 2023-02, Vol.138 (2), p.183, Article 183</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-cb1f88fab8893f8154c8f2f6ba1433f2aeddf6bef4f0a6bfa87092bb2c98c0833</citedby><cites>FETCH-LOGICAL-c334t-cb1f88fab8893f8154c8f2f6ba1433f2aeddf6bef4f0a6bfa87092bb2c98c0833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-023-03752-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920228342?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21370,27906,27907,33726,41470,42539,43787,51301,64365,64369,72219</link.rule.ids></links><search><creatorcontrib>Ratha, P. K.</creatorcontrib><creatorcontrib>Tripathy, R. S.</creatorcontrib><creatorcontrib>Mishra, S. R.</creatorcontrib><title>Particle-shape illustration via the Hamilton–Crosser and Yamada–Ota hybrid nanofluid flow models past a stretching cylinder</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The current flow phenomena are described for the thermophysical behavior of nanoparticles due to the implementation of the Hamilton–Crosser hybrid nanofluid model through a stretching cylinder. Further, the Yamada–Ota hybrid nanofluid model is also described for cylindrical- and spherical-shaped nanoparticles. Interpretation of inertial drag with thermal radiation and the use of homogenous and heterogeneous chemical reaction enhance the study as well, and the utilization of hybrid nanofluid is crucial due to the recent requirement for industrial applications and in many fields of biological, engineering sciences, etc. Employing useful transformations, the governing equations are transformed into ordinary nonlinear equations, and further, these are solved numerically. The analysis of the various physical components that characterize the flow phenomena is obtained and presented through graphs. The behavior of these parameters is described briefly exhibiting their physical significance.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Chemical reactions</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cylinders</subject><subject>Entropy</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Industrial applications</subject><subject>Investigations</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nonlinear equations</subject><subject>Optical and Plasma Physics</subject><subject>Performance evaluation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Stretching</subject><subject>Theoretical</subject><subject>Thermal radiation</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkM1KAzEQxxdRsNQ-gwHPa_O1bfYoRa0g6EEPnsJsNmlT0uyapEpP-g6-oU9iagW9OZf5YP7_YX5FcUrwOSEcj3W_6seRMDbBJaasxGxa0bI6KAaU1LisOOeHf-rjYhTjCufgNeE1HxRv9xCSVU6XcQm9Rta5TUwBku08erGA0lKjOaytS53_fP-YhS5GHRD4Fj3BGlrIw7sEaLltgm2RB98Zt8mVcd0rWnetdhH1EBMClI11UkvrF0htnfWtDifFkQEX9egnD4vHq8uH2by8vbu-mV3clooxnkrVECOEgUaImhlBKq6EoWbSAOGMGQq6bXOnDTcYJo0BMcU1bRqqaqGwYGxYnO19-9A9b3RMctVtgs8nJa0pplQwTvPWdL-ldm8GbWQf7BrCVhIsd8DlDrjcA5cZuPwGLqusFHtlzAq_0OHX_z_pF0HljIE</recordid><startdate>20230227</startdate><enddate>20230227</enddate><creator>Ratha, P. K.</creator><creator>Tripathy, R. S.</creator><creator>Mishra, S. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230227</creationdate><title>Particle-shape illustration via the Hamilton–Crosser and Yamada–Ota hybrid nanofluid flow models past a stretching cylinder</title><author>Ratha, P. K. ; Tripathy, R. S. ; Mishra, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-cb1f88fab8893f8154c8f2f6ba1433f2aeddf6bef4f0a6bfa87092bb2c98c0833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Chemical reactions</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cylinders</topic><topic>Entropy</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Industrial applications</topic><topic>Investigations</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nonlinear equations</topic><topic>Optical and Plasma Physics</topic><topic>Performance evaluation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Stretching</topic><topic>Theoretical</topic><topic>Thermal radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratha, P. K.</creatorcontrib><creatorcontrib>Tripathy, R. S.</creatorcontrib><creatorcontrib>Mishra, S. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratha, P. K.</au><au>Tripathy, R. S.</au><au>Mishra, S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle-shape illustration via the Hamilton–Crosser and Yamada–Ota hybrid nanofluid flow models past a stretching cylinder</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2023-02-27</date><risdate>2023</risdate><volume>138</volume><issue>2</issue><spage>183</spage><pages>183-</pages><artnum>183</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The current flow phenomena are described for the thermophysical behavior of nanoparticles due to the implementation of the Hamilton–Crosser hybrid nanofluid model through a stretching cylinder. Further, the Yamada–Ota hybrid nanofluid model is also described for cylindrical- and spherical-shaped nanoparticles. Interpretation of inertial drag with thermal radiation and the use of homogenous and heterogeneous chemical reaction enhance the study as well, and the utilization of hybrid nanofluid is crucial due to the recent requirement for industrial applications and in many fields of biological, engineering sciences, etc. Employing useful transformations, the governing equations are transformed into ordinary nonlinear equations, and further, these are solved numerically. The analysis of the various physical components that characterize the flow phenomena is obtained and presented through graphs. The behavior of these parameters is described briefly exhibiting their physical significance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-023-03752-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 2190-5444
ispartof European physical journal plus, 2023-02, Vol.138 (2), p.183, Article 183
issn 2190-5444
2190-5444
language eng
recordid cdi_proquest_journals_2920228342
source SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Applied and Technical Physics
Atomic
Chemical reactions
Complex Systems
Condensed Matter Physics
Cylinders
Entropy
Flow velocity
Fluid flow
Heat conductivity
Heat transfer
Industrial applications
Investigations
Magnetic fields
Mathematical and Computational Physics
Mathematical models
Molecular
Nanofluids
Nanoparticles
Nonlinear equations
Optical and Plasma Physics
Performance evaluation
Physics
Physics and Astronomy
Regular Article
Stretching
Theoretical
Thermal radiation
title Particle-shape illustration via the Hamilton–Crosser and Yamada–Ota hybrid nanofluid flow models past a stretching cylinder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle-shape%20illustration%20via%20the%20Hamilton%E2%80%93Crosser%20and%20Yamada%E2%80%93Ota%20hybrid%20nanofluid%20flow%20models%20past%20a%20stretching%20cylinder&rft.jtitle=European%20physical%20journal%20plus&rft.au=Ratha,%20P.%20K.&rft.date=2023-02-27&rft.volume=138&rft.issue=2&rft.spage=183&rft.pages=183-&rft.artnum=183&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-023-03752-5&rft_dat=%3Cproquest_cross%3E2920228342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920228342&rft_id=info:pmid/&rfr_iscdi=true