Particle-shape illustration via the Hamilton–Crosser and Yamada–Ota hybrid nanofluid flow models past a stretching cylinder
The current flow phenomena are described for the thermophysical behavior of nanoparticles due to the implementation of the Hamilton–Crosser hybrid nanofluid model through a stretching cylinder. Further, the Yamada–Ota hybrid nanofluid model is also described for cylindrical- and spherical-shaped nan...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2023-02, Vol.138 (2), p.183, Article 183 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 183 |
container_title | European physical journal plus |
container_volume | 138 |
creator | Ratha, P. K. Tripathy, R. S. Mishra, S. R. |
description | The current flow phenomena are described for the thermophysical behavior of nanoparticles due to the implementation of the Hamilton–Crosser hybrid nanofluid model through a stretching cylinder. Further, the Yamada–Ota hybrid nanofluid model is also described for cylindrical- and spherical-shaped nanoparticles. Interpretation of inertial drag with thermal radiation and the use of homogenous and heterogeneous chemical reaction enhance the study as well, and the utilization of hybrid nanofluid is crucial due to the recent requirement for industrial applications and in many fields of biological, engineering sciences, etc. Employing useful transformations, the governing equations are transformed into ordinary nonlinear equations, and further, these are solved numerically. The analysis of the various physical components that characterize the flow phenomena is obtained and presented through graphs. The behavior of these parameters is described briefly exhibiting their physical significance. |
doi_str_mv | 10.1140/epjp/s13360-023-03752-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920228342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920228342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-cb1f88fab8893f8154c8f2f6ba1433f2aeddf6bef4f0a6bfa87092bb2c98c0833</originalsourceid><addsrcrecordid>eNqFkM1KAzEQxxdRsNQ-gwHPa_O1bfYoRa0g6EEPnsJsNmlT0uyapEpP-g6-oU9iagW9OZf5YP7_YX5FcUrwOSEcj3W_6seRMDbBJaasxGxa0bI6KAaU1LisOOeHf-rjYhTjCufgNeE1HxRv9xCSVU6XcQm9Rta5TUwBku08erGA0lKjOaytS53_fP-YhS5GHRD4Fj3BGlrIw7sEaLltgm2RB98Zt8mVcd0rWnetdhH1EBMClI11UkvrF0htnfWtDifFkQEX9egnD4vHq8uH2by8vbu-mV3clooxnkrVECOEgUaImhlBKq6EoWbSAOGMGQq6bXOnDTcYJo0BMcU1bRqqaqGwYGxYnO19-9A9b3RMctVtgs8nJa0pplQwTvPWdL-ldm8GbWQf7BrCVhIsd8DlDrjcA5cZuPwGLqusFHtlzAq_0OHX_z_pF0HljIE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920228342</pqid></control><display><type>article</type><title>Particle-shape illustration via the Hamilton–Crosser and Yamada–Ota hybrid nanofluid flow models past a stretching cylinder</title><source>SpringerLink Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Ratha, P. K. ; Tripathy, R. S. ; Mishra, S. R.</creator><creatorcontrib>Ratha, P. K. ; Tripathy, R. S. ; Mishra, S. R.</creatorcontrib><description>The current flow phenomena are described for the thermophysical behavior of nanoparticles due to the implementation of the Hamilton–Crosser hybrid nanofluid model through a stretching cylinder. Further, the Yamada–Ota hybrid nanofluid model is also described for cylindrical- and spherical-shaped nanoparticles. Interpretation of inertial drag with thermal radiation and the use of homogenous and heterogeneous chemical reaction enhance the study as well, and the utilization of hybrid nanofluid is crucial due to the recent requirement for industrial applications and in many fields of biological, engineering sciences, etc. Employing useful transformations, the governing equations are transformed into ordinary nonlinear equations, and further, these are solved numerically. The analysis of the various physical components that characterize the flow phenomena is obtained and presented through graphs. The behavior of these parameters is described briefly exhibiting their physical significance.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/s13360-023-03752-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied and Technical Physics ; Atomic ; Chemical reactions ; Complex Systems ; Condensed Matter Physics ; Cylinders ; Entropy ; Flow velocity ; Fluid flow ; Heat conductivity ; Heat transfer ; Industrial applications ; Investigations ; Magnetic fields ; Mathematical and Computational Physics ; Mathematical models ; Molecular ; Nanofluids ; Nanoparticles ; Nonlinear equations ; Optical and Plasma Physics ; Performance evaluation ; Physics ; Physics and Astronomy ; Regular Article ; Stretching ; Theoretical ; Thermal radiation</subject><ispartof>European physical journal plus, 2023-02, Vol.138 (2), p.183, Article 183</ispartof><rights>The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023. corrected publication 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-cb1f88fab8893f8154c8f2f6ba1433f2aeddf6bef4f0a6bfa87092bb2c98c0833</citedby><cites>FETCH-LOGICAL-c334t-cb1f88fab8893f8154c8f2f6ba1433f2aeddf6bef4f0a6bfa87092bb2c98c0833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/s13360-023-03752-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920228342?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,777,781,21370,27906,27907,33726,41470,42539,43787,51301,64365,64369,72219</link.rule.ids></links><search><creatorcontrib>Ratha, P. K.</creatorcontrib><creatorcontrib>Tripathy, R. S.</creatorcontrib><creatorcontrib>Mishra, S. R.</creatorcontrib><title>Particle-shape illustration via the Hamilton–Crosser and Yamada–Ota hybrid nanofluid flow models past a stretching cylinder</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>The current flow phenomena are described for the thermophysical behavior of nanoparticles due to the implementation of the Hamilton–Crosser hybrid nanofluid model through a stretching cylinder. Further, the Yamada–Ota hybrid nanofluid model is also described for cylindrical- and spherical-shaped nanoparticles. Interpretation of inertial drag with thermal radiation and the use of homogenous and heterogeneous chemical reaction enhance the study as well, and the utilization of hybrid nanofluid is crucial due to the recent requirement for industrial applications and in many fields of biological, engineering sciences, etc. Employing useful transformations, the governing equations are transformed into ordinary nonlinear equations, and further, these are solved numerically. The analysis of the various physical components that characterize the flow phenomena is obtained and presented through graphs. The behavior of these parameters is described briefly exhibiting their physical significance.</description><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Chemical reactions</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Cylinders</subject><subject>Entropy</subject><subject>Flow velocity</subject><subject>Fluid flow</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Industrial applications</subject><subject>Investigations</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Nanofluids</subject><subject>Nanoparticles</subject><subject>Nonlinear equations</subject><subject>Optical and Plasma Physics</subject><subject>Performance evaluation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Stretching</subject><subject>Theoretical</subject><subject>Thermal radiation</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkM1KAzEQxxdRsNQ-gwHPa_O1bfYoRa0g6EEPnsJsNmlT0uyapEpP-g6-oU9iagW9OZf5YP7_YX5FcUrwOSEcj3W_6seRMDbBJaasxGxa0bI6KAaU1LisOOeHf-rjYhTjCufgNeE1HxRv9xCSVU6XcQm9Rta5TUwBku08erGA0lKjOaytS53_fP-YhS5GHRD4Fj3BGlrIw7sEaLltgm2RB98Zt8mVcd0rWnetdhH1EBMClI11UkvrF0htnfWtDifFkQEX9egnD4vHq8uH2by8vbu-mV3clooxnkrVECOEgUaImhlBKq6EoWbSAOGMGQq6bXOnDTcYJo0BMcU1bRqqaqGwYGxYnO19-9A9b3RMctVtgs8nJa0pplQwTvPWdL-ldm8GbWQf7BrCVhIsd8DlDrjcA5cZuPwGLqusFHtlzAq_0OHX_z_pF0HljIE</recordid><startdate>20230227</startdate><enddate>20230227</enddate><creator>Ratha, P. K.</creator><creator>Tripathy, R. S.</creator><creator>Mishra, S. R.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20230227</creationdate><title>Particle-shape illustration via the Hamilton–Crosser and Yamada–Ota hybrid nanofluid flow models past a stretching cylinder</title><author>Ratha, P. K. ; Tripathy, R. S. ; Mishra, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-cb1f88fab8893f8154c8f2f6ba1433f2aeddf6bef4f0a6bfa87092bb2c98c0833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Chemical reactions</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Cylinders</topic><topic>Entropy</topic><topic>Flow velocity</topic><topic>Fluid flow</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Industrial applications</topic><topic>Investigations</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Nanofluids</topic><topic>Nanoparticles</topic><topic>Nonlinear equations</topic><topic>Optical and Plasma Physics</topic><topic>Performance evaluation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Stretching</topic><topic>Theoretical</topic><topic>Thermal radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratha, P. K.</creatorcontrib><creatorcontrib>Tripathy, R. S.</creatorcontrib><creatorcontrib>Mishra, S. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratha, P. K.</au><au>Tripathy, R. S.</au><au>Mishra, S. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle-shape illustration via the Hamilton–Crosser and Yamada–Ota hybrid nanofluid flow models past a stretching cylinder</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2023-02-27</date><risdate>2023</risdate><volume>138</volume><issue>2</issue><spage>183</spage><pages>183-</pages><artnum>183</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>The current flow phenomena are described for the thermophysical behavior of nanoparticles due to the implementation of the Hamilton–Crosser hybrid nanofluid model through a stretching cylinder. Further, the Yamada–Ota hybrid nanofluid model is also described for cylindrical- and spherical-shaped nanoparticles. Interpretation of inertial drag with thermal radiation and the use of homogenous and heterogeneous chemical reaction enhance the study as well, and the utilization of hybrid nanofluid is crucial due to the recent requirement for industrial applications and in many fields of biological, engineering sciences, etc. Employing useful transformations, the governing equations are transformed into ordinary nonlinear equations, and further, these are solved numerically. The analysis of the various physical components that characterize the flow phenomena is obtained and presented through graphs. The behavior of these parameters is described briefly exhibiting their physical significance.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/s13360-023-03752-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2023-02, Vol.138 (2), p.183, Article 183 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2920228342 |
source | SpringerLink Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Applied and Technical Physics Atomic Chemical reactions Complex Systems Condensed Matter Physics Cylinders Entropy Flow velocity Fluid flow Heat conductivity Heat transfer Industrial applications Investigations Magnetic fields Mathematical and Computational Physics Mathematical models Molecular Nanofluids Nanoparticles Nonlinear equations Optical and Plasma Physics Performance evaluation Physics Physics and Astronomy Regular Article Stretching Theoretical Thermal radiation |
title | Particle-shape illustration via the Hamilton–Crosser and Yamada–Ota hybrid nanofluid flow models past a stretching cylinder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A38%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle-shape%20illustration%20via%20the%20Hamilton%E2%80%93Crosser%20and%20Yamada%E2%80%93Ota%20hybrid%20nanofluid%20flow%20models%20past%20a%20stretching%20cylinder&rft.jtitle=European%20physical%20journal%20plus&rft.au=Ratha,%20P.%20K.&rft.date=2023-02-27&rft.volume=138&rft.issue=2&rft.spage=183&rft.pages=183-&rft.artnum=183&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/s13360-023-03752-5&rft_dat=%3Cproquest_cross%3E2920228342%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920228342&rft_id=info:pmid/&rfr_iscdi=true |