Directional local extrema patterns: a new descriptor for content based image retrieval

In this paper, a new algorithm using directional local extrema patterns meant for content-based image retrieval application is proposed. The standard local binary pattern (LBP) encodes the relationship between reference pixel and its surrounding neighbors by comparing gray-level values. The proposed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of multimedia information retrieval 2012-10, Vol.1 (3), p.191-203
Hauptverfasser: Murala, Subrahmanyam, Maheshwari, R. P., Balasubramanian, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue 3
container_start_page 191
container_title International journal of multimedia information retrieval
container_volume 1
creator Murala, Subrahmanyam
Maheshwari, R. P.
Balasubramanian, R.
description In this paper, a new algorithm using directional local extrema patterns meant for content-based image retrieval application is proposed. The standard local binary pattern (LBP) encodes the relationship between reference pixel and its surrounding neighbors by comparing gray-level values. The proposed method differs from the existing LBP in a manner that it extracts the directional edge information based on local extrema in 0 , 45 , 90 , and 135 directions in an image. Performance is compared with LBP, block-based LBP (BLK_LBP), center-symmetric local binary pattern (CS-LBP), local edge patterns for segmentation (LEPSEG), local edge patterns for image retrieval (LEPINV), and other existing transform domain methods by conducting four experiments on benchmark databases viz. Corel (DB1) and Brodatz (DB2) databases. The results after being investigated show a significant improvement in terms of their evaluation measures as compared with other existing methods on respective databases.
doi_str_mv 10.1007/s13735-012-0008-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920224959</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920224959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-dede15c22254ad45512265846f656341c56ed03897bfe1d022a96fe6a4506f883</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOIzzA9wFXEeT2yZt3cn4hAE3Ku5CJr0dOnSammR8_HtTKrpycR-L7xzuPYScCn4uOC8ugsiKTDIugHHOSwYHZAaiAqYUvB7-7kIck0UIWz5CoAQvZuTluvVoY-t609HO2dTxM3rcGTqYGNH34ZIa2uMHrTFY3w7Redqksq6P2Ee6NgFr2u7MBqnH6Ft8N90JOWpMF3DxM-fk-fbmaXnPVo93D8urFbOZrCKrsUYhLQDI3NS5lAJAyTJXjZIqy4WVCmuelVWxblDUHMBUqkFlcslVU5bZnJxNvoN3b3sMUW_d3qdfgoYKEp9XskqUmCjrXQgeGz34dLD_0oLrMUE9JahTgnoMR0PSwKQJie036P-c_xd9A-ttcrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920224959</pqid></control><display><type>article</type><title>Directional local extrema patterns: a new descriptor for content based image retrieval</title><source>SpringerNature Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Murala, Subrahmanyam ; Maheshwari, R. P. ; Balasubramanian, R.</creator><creatorcontrib>Murala, Subrahmanyam ; Maheshwari, R. P. ; Balasubramanian, R.</creatorcontrib><description>In this paper, a new algorithm using directional local extrema patterns meant for content-based image retrieval application is proposed. The standard local binary pattern (LBP) encodes the relationship between reference pixel and its surrounding neighbors by comparing gray-level values. The proposed method differs from the existing LBP in a manner that it extracts the directional edge information based on local extrema in 0 , 45 , 90 , and 135 directions in an image. Performance is compared with LBP, block-based LBP (BLK_LBP), center-symmetric local binary pattern (CS-LBP), local edge patterns for segmentation (LEPSEG), local edge patterns for image retrieval (LEPINV), and other existing transform domain methods by conducting four experiments on benchmark databases viz. Corel (DB1) and Brodatz (DB2) databases. The results after being investigated show a significant improvement in terms of their evaluation measures as compared with other existing methods on respective databases.</description><identifier>ISSN: 2192-6611</identifier><identifier>EISSN: 2192-662X</identifier><identifier>DOI: 10.1007/s13735-012-0008-2</identifier><language>eng</language><publisher>London: Springer-Verlag</publisher><subject>Algorithms ; Classification ; Computer Science ; Data Mining and Knowledge Discovery ; Database Management ; Image Processing and Computer Vision ; Image retrieval ; Image segmentation ; Information Storage and Retrieval ; Information Systems Applications (incl.Internet) ; Multimedia Information Systems ; Regular Paper ; Retrieval ; Wavelet transforms</subject><ispartof>International journal of multimedia information retrieval, 2012-10, Vol.1 (3), p.191-203</ispartof><rights>Springer-Verlag London Limited 2012</rights><rights>Springer-Verlag London Limited 2012.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-dede15c22254ad45512265846f656341c56ed03897bfe1d022a96fe6a4506f883</citedby><cites>FETCH-LOGICAL-c359t-dede15c22254ad45512265846f656341c56ed03897bfe1d022a96fe6a4506f883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13735-012-0008-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920224959?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,41488,42557,43805,51319,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Murala, Subrahmanyam</creatorcontrib><creatorcontrib>Maheshwari, R. P.</creatorcontrib><creatorcontrib>Balasubramanian, R.</creatorcontrib><title>Directional local extrema patterns: a new descriptor for content based image retrieval</title><title>International journal of multimedia information retrieval</title><addtitle>Int J Multimed Info Retr</addtitle><description>In this paper, a new algorithm using directional local extrema patterns meant for content-based image retrieval application is proposed. The standard local binary pattern (LBP) encodes the relationship between reference pixel and its surrounding neighbors by comparing gray-level values. The proposed method differs from the existing LBP in a manner that it extracts the directional edge information based on local extrema in 0 , 45 , 90 , and 135 directions in an image. Performance is compared with LBP, block-based LBP (BLK_LBP), center-symmetric local binary pattern (CS-LBP), local edge patterns for segmentation (LEPSEG), local edge patterns for image retrieval (LEPINV), and other existing transform domain methods by conducting four experiments on benchmark databases viz. Corel (DB1) and Brodatz (DB2) databases. The results after being investigated show a significant improvement in terms of their evaluation measures as compared with other existing methods on respective databases.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Database Management</subject><subject>Image Processing and Computer Vision</subject><subject>Image retrieval</subject><subject>Image segmentation</subject><subject>Information Storage and Retrieval</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Multimedia Information Systems</subject><subject>Regular Paper</subject><subject>Retrieval</subject><subject>Wavelet transforms</subject><issn>2192-6611</issn><issn>2192-662X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMoOIzzA9wFXEeT2yZt3cn4hAE3Ku5CJr0dOnSammR8_HtTKrpycR-L7xzuPYScCn4uOC8ugsiKTDIugHHOSwYHZAaiAqYUvB7-7kIck0UIWz5CoAQvZuTluvVoY-t609HO2dTxM3rcGTqYGNH34ZIa2uMHrTFY3w7Redqksq6P2Ee6NgFr2u7MBqnH6Ft8N90JOWpMF3DxM-fk-fbmaXnPVo93D8urFbOZrCKrsUYhLQDI3NS5lAJAyTJXjZIqy4WVCmuelVWxblDUHMBUqkFlcslVU5bZnJxNvoN3b3sMUW_d3qdfgoYKEp9XskqUmCjrXQgeGz34dLD_0oLrMUE9JahTgnoMR0PSwKQJie036P-c_xd9A-ttcrg</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Murala, Subrahmanyam</creator><creator>Maheshwari, R. P.</creator><creator>Balasubramanian, R.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20121001</creationdate><title>Directional local extrema patterns: a new descriptor for content based image retrieval</title><author>Murala, Subrahmanyam ; Maheshwari, R. P. ; Balasubramanian, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-dede15c22254ad45512265846f656341c56ed03897bfe1d022a96fe6a4506f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Database Management</topic><topic>Image Processing and Computer Vision</topic><topic>Image retrieval</topic><topic>Image segmentation</topic><topic>Information Storage and Retrieval</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Multimedia Information Systems</topic><topic>Regular Paper</topic><topic>Retrieval</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murala, Subrahmanyam</creatorcontrib><creatorcontrib>Maheshwari, R. P.</creatorcontrib><creatorcontrib>Balasubramanian, R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>International journal of multimedia information retrieval</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murala, Subrahmanyam</au><au>Maheshwari, R. P.</au><au>Balasubramanian, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directional local extrema patterns: a new descriptor for content based image retrieval</atitle><jtitle>International journal of multimedia information retrieval</jtitle><stitle>Int J Multimed Info Retr</stitle><date>2012-10-01</date><risdate>2012</risdate><volume>1</volume><issue>3</issue><spage>191</spage><epage>203</epage><pages>191-203</pages><issn>2192-6611</issn><eissn>2192-662X</eissn><abstract>In this paper, a new algorithm using directional local extrema patterns meant for content-based image retrieval application is proposed. The standard local binary pattern (LBP) encodes the relationship between reference pixel and its surrounding neighbors by comparing gray-level values. The proposed method differs from the existing LBP in a manner that it extracts the directional edge information based on local extrema in 0 , 45 , 90 , and 135 directions in an image. Performance is compared with LBP, block-based LBP (BLK_LBP), center-symmetric local binary pattern (CS-LBP), local edge patterns for segmentation (LEPSEG), local edge patterns for image retrieval (LEPINV), and other existing transform domain methods by conducting four experiments on benchmark databases viz. Corel (DB1) and Brodatz (DB2) databases. The results after being investigated show a significant improvement in terms of their evaluation measures as compared with other existing methods on respective databases.</abstract><cop>London</cop><pub>Springer-Verlag</pub><doi>10.1007/s13735-012-0008-2</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-6611
ispartof International journal of multimedia information retrieval, 2012-10, Vol.1 (3), p.191-203
issn 2192-6611
2192-662X
language eng
recordid cdi_proquest_journals_2920224959
source SpringerNature Journals; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Classification
Computer Science
Data Mining and Knowledge Discovery
Database Management
Image Processing and Computer Vision
Image retrieval
Image segmentation
Information Storage and Retrieval
Information Systems Applications (incl.Internet)
Multimedia Information Systems
Regular Paper
Retrieval
Wavelet transforms
title Directional local extrema patterns: a new descriptor for content based image retrieval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directional%20local%20extrema%20patterns:%20a%20new%20descriptor%20for%20content%20based%20image%20retrieval&rft.jtitle=International%20journal%20of%20multimedia%20information%20retrieval&rft.au=Murala,%20Subrahmanyam&rft.date=2012-10-01&rft.volume=1&rft.issue=3&rft.spage=191&rft.epage=203&rft.pages=191-203&rft.issn=2192-6611&rft.eissn=2192-662X&rft_id=info:doi/10.1007/s13735-012-0008-2&rft_dat=%3Cproquest_cross%3E2920224959%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920224959&rft_id=info:pmid/&rfr_iscdi=true