Probing structure, electronic property, and hydrogen adsorption for the alkali auride series
. The structural evolution, relative stability, electronic property, and hydrogen adsorption of the alkali auride series, Au n M ( n = 1 - 8 ), M = Li , Na, K, Rb, Cs), have been investigated using the density functional theory calculations at PW91 level. For the lowest-energy clusters, the dopant a...
Gespeichert in:
Veröffentlicht in: | European physical journal plus 2017-04, Vol.132 (4), p.159, Article 159 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 159 |
container_title | European physical journal plus |
container_volume | 132 |
creator | Li, Yang Li, Yan-Fang Tan, Jia-Jin Jiang, Bi-Fen OuYang, Yong-Zhong |
description | .
The structural evolution, relative stability, electronic property, and hydrogen adsorption of the alkali auride series, Au
n
M (
n
=
1
-
8
),
M
=
Li
, Na, K, Rb, Cs), have been investigated using the density functional theory calculations at PW91 level. For the lowest-energy clusters, the dopant atom M prefers to occupy a peripheral or capped site in the host, and M-induced geometries become three-dimensional more easily. The average binding energy per atom, fragmentation energy, second-order difference of energy, and HOMO-LUMO energy gap show a pronounced odd-even oscillation with the number of Au atoms, and the enhanced relative stabilities are found in Au
5
M (
M
=
Li
, Na, K) and Au
3
M (
M
=
Rb
, Cs) clusters. In these clusters, the H
2
molecule would like to bond with Au atom rather than impurity atom. After adsorption, the Au
n
M structures and H
2
molecule in all Au
n
M-H
2
clusters are hardly perturbed and still maintain their structural integrity. The geometrical and energetic information indicates a weak adsorption of H
2
molecule. |
doi_str_mv | 10.1140/epjp/i2017-11427-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920220538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920220538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-c30c1aa70d8f23f53ca10a5777e48d73a49a41235564603b6274e268025727ba3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsGj_gKcFr43dr2SToxS_oKAHvQnLNpm0W2M2zm4O_fduW0FPzmE-4H1nhoeQK85uOFdsDsN2mDvBuM7SLHSmT8hE8IpluVLq9E9_TqYhbFkKVXFVqQl5f0G_cv2ahohjHUeEGYUO6oi-dzUd0A-AcTejtm_oZtegX0NPbRM8DtH5nrYeadwAtd2H7Ry1I7oGaAB0EC7JWWu7ANOfekHe7u9eF4_Z8vnhaXG7zGrJq5gyq7m1mjVlK2Sby9pyZnOtNaiy0dKqyiouZJ4XqmByVQitQBQlE7kWemXlBbk-7k3vfo0Qotn6Eft00ohKMCFYLsukEkdVjT4EhNYM6D4t7gxnZg_S7EGaA0hzAGl0MsmjKSRxvwb8Xf2P6xv37HfU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920220538</pqid></control><display><type>article</type><title>Probing structure, electronic property, and hydrogen adsorption for the alkali auride series</title><source>Springer Nature - Complete Springer Journals</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Li, Yang ; Li, Yan-Fang ; Tan, Jia-Jin ; Jiang, Bi-Fen ; OuYang, Yong-Zhong</creator><creatorcontrib>Li, Yang ; Li, Yan-Fang ; Tan, Jia-Jin ; Jiang, Bi-Fen ; OuYang, Yong-Zhong</creatorcontrib><description>.
The structural evolution, relative stability, electronic property, and hydrogen adsorption of the alkali auride series, Au
n
M (
n
=
1
-
8
),
M
=
Li
, Na, K, Rb, Cs), have been investigated using the density functional theory calculations at PW91 level. For the lowest-energy clusters, the dopant atom M prefers to occupy a peripheral or capped site in the host, and M-induced geometries become three-dimensional more easily. The average binding energy per atom, fragmentation energy, second-order difference of energy, and HOMO-LUMO energy gap show a pronounced odd-even oscillation with the number of Au atoms, and the enhanced relative stabilities are found in Au
5
M (
M
=
Li
, Na, K) and Au
3
M (
M
=
Rb
, Cs) clusters. In these clusters, the H
2
molecule would like to bond with Au atom rather than impurity atom. After adsorption, the Au
n
M structures and H
2
molecule in all Au
n
M-H
2
clusters are hardly perturbed and still maintain their structural integrity. The geometrical and energetic information indicates a weak adsorption of H
2
molecule.</description><identifier>ISSN: 2190-5444</identifier><identifier>EISSN: 2190-5444</identifier><identifier>DOI: 10.1140/epjp/i2017-11427-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adsorption ; Applied and Technical Physics ; Atomic ; Atomic properties ; Cesium ; Clusters ; Complex Systems ; Condensed Matter Physics ; Density functional theory ; Energy gap ; Hydrogen ; Lithium ; Mathematical and Computational Physics ; Molecular ; Molecular orbitals ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Regular Article ; Rubidium ; Structural integrity ; Structural stability ; Theoretical</subject><ispartof>European physical journal plus, 2017-04, Vol.132 (4), p.159, Article 159</ispartof><rights>Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Società Italiana di Fisica and Springer-Verlag Berlin Heidelberg 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-c30c1aa70d8f23f53ca10a5777e48d73a49a41235564603b6274e268025727ba3</citedby><cites>FETCH-LOGICAL-c319t-c30c1aa70d8f23f53ca10a5777e48d73a49a41235564603b6274e268025727ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjp/i2017-11427-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920220538?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21368,27903,27904,33723,41467,42536,43784,51298,64362,64366,72216</link.rule.ids></links><search><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Li, Yan-Fang</creatorcontrib><creatorcontrib>Tan, Jia-Jin</creatorcontrib><creatorcontrib>Jiang, Bi-Fen</creatorcontrib><creatorcontrib>OuYang, Yong-Zhong</creatorcontrib><title>Probing structure, electronic property, and hydrogen adsorption for the alkali auride series</title><title>European physical journal plus</title><addtitle>Eur. Phys. J. Plus</addtitle><description>.
The structural evolution, relative stability, electronic property, and hydrogen adsorption of the alkali auride series, Au
n
M (
n
=
1
-
8
),
M
=
Li
, Na, K, Rb, Cs), have been investigated using the density functional theory calculations at PW91 level. For the lowest-energy clusters, the dopant atom M prefers to occupy a peripheral or capped site in the host, and M-induced geometries become three-dimensional more easily. The average binding energy per atom, fragmentation energy, second-order difference of energy, and HOMO-LUMO energy gap show a pronounced odd-even oscillation with the number of Au atoms, and the enhanced relative stabilities are found in Au
5
M (
M
=
Li
, Na, K) and Au
3
M (
M
=
Rb
, Cs) clusters. In these clusters, the H
2
molecule would like to bond with Au atom rather than impurity atom. After adsorption, the Au
n
M structures and H
2
molecule in all Au
n
M-H
2
clusters are hardly perturbed and still maintain their structural integrity. The geometrical and energetic information indicates a weak adsorption of H
2
molecule.</description><subject>Adsorption</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Atomic properties</subject><subject>Cesium</subject><subject>Clusters</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Density functional theory</subject><subject>Energy gap</subject><subject>Hydrogen</subject><subject>Lithium</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Molecular orbitals</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Rubidium</subject><subject>Structural integrity</subject><subject>Structural stability</subject><subject>Theoretical</subject><issn>2190-5444</issn><issn>2190-5444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1Lw0AQhhdRsGj_gKcFr43dr2SToxS_oKAHvQnLNpm0W2M2zm4O_fduW0FPzmE-4H1nhoeQK85uOFdsDsN2mDvBuM7SLHSmT8hE8IpluVLq9E9_TqYhbFkKVXFVqQl5f0G_cv2ahohjHUeEGYUO6oi-dzUd0A-AcTejtm_oZtegX0NPbRM8DtH5nrYeadwAtd2H7Ry1I7oGaAB0EC7JWWu7ANOfekHe7u9eF4_Z8vnhaXG7zGrJq5gyq7m1mjVlK2Sby9pyZnOtNaiy0dKqyiouZJ4XqmByVQitQBQlE7kWemXlBbk-7k3vfo0Qotn6Eft00ohKMCFYLsukEkdVjT4EhNYM6D4t7gxnZg_S7EGaA0hzAGl0MsmjKSRxvwb8Xf2P6xv37HfU</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Li, Yang</creator><creator>Li, Yan-Fang</creator><creator>Tan, Jia-Jin</creator><creator>Jiang, Bi-Fen</creator><creator>OuYang, Yong-Zhong</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170401</creationdate><title>Probing structure, electronic property, and hydrogen adsorption for the alkali auride series</title><author>Li, Yang ; Li, Yan-Fang ; Tan, Jia-Jin ; Jiang, Bi-Fen ; OuYang, Yong-Zhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-c30c1aa70d8f23f53ca10a5777e48d73a49a41235564603b6274e268025727ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorption</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Atomic properties</topic><topic>Cesium</topic><topic>Clusters</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Density functional theory</topic><topic>Energy gap</topic><topic>Hydrogen</topic><topic>Lithium</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Molecular orbitals</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Rubidium</topic><topic>Structural integrity</topic><topic>Structural stability</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yang</creatorcontrib><creatorcontrib>Li, Yan-Fang</creatorcontrib><creatorcontrib>Tan, Jia-Jin</creatorcontrib><creatorcontrib>Jiang, Bi-Fen</creatorcontrib><creatorcontrib>OuYang, Yong-Zhong</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>European physical journal plus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yang</au><au>Li, Yan-Fang</au><au>Tan, Jia-Jin</au><au>Jiang, Bi-Fen</au><au>OuYang, Yong-Zhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing structure, electronic property, and hydrogen adsorption for the alkali auride series</atitle><jtitle>European physical journal plus</jtitle><stitle>Eur. Phys. J. Plus</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>132</volume><issue>4</issue><spage>159</spage><pages>159-</pages><artnum>159</artnum><issn>2190-5444</issn><eissn>2190-5444</eissn><abstract>.
The structural evolution, relative stability, electronic property, and hydrogen adsorption of the alkali auride series, Au
n
M (
n
=
1
-
8
),
M
=
Li
, Na, K, Rb, Cs), have been investigated using the density functional theory calculations at PW91 level. For the lowest-energy clusters, the dopant atom M prefers to occupy a peripheral or capped site in the host, and M-induced geometries become three-dimensional more easily. The average binding energy per atom, fragmentation energy, second-order difference of energy, and HOMO-LUMO energy gap show a pronounced odd-even oscillation with the number of Au atoms, and the enhanced relative stabilities are found in Au
5
M (
M
=
Li
, Na, K) and Au
3
M (
M
=
Rb
, Cs) clusters. In these clusters, the H
2
molecule would like to bond with Au atom rather than impurity atom. After adsorption, the Au
n
M structures and H
2
molecule in all Au
n
M-H
2
clusters are hardly perturbed and still maintain their structural integrity. The geometrical and energetic information indicates a weak adsorption of H
2
molecule.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjp/i2017-11427-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-5444 |
ispartof | European physical journal plus, 2017-04, Vol.132 (4), p.159, Article 159 |
issn | 2190-5444 2190-5444 |
language | eng |
recordid | cdi_proquest_journals_2920220538 |
source | Springer Nature - Complete Springer Journals; ProQuest Central UK/Ireland; ProQuest Central |
subjects | Adsorption Applied and Technical Physics Atomic Atomic properties Cesium Clusters Complex Systems Condensed Matter Physics Density functional theory Energy gap Hydrogen Lithium Mathematical and Computational Physics Molecular Molecular orbitals Optical and Plasma Physics Physics Physics and Astronomy Regular Article Rubidium Structural integrity Structural stability Theoretical |
title | Probing structure, electronic property, and hydrogen adsorption for the alkali auride series |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A03%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20structure,%20electronic%20property,%20and%20hydrogen%20adsorption%20for%20the%20alkali%20auride%20series&rft.jtitle=European%20physical%20journal%20plus&rft.au=Li,%20Yang&rft.date=2017-04-01&rft.volume=132&rft.issue=4&rft.spage=159&rft.pages=159-&rft.artnum=159&rft.issn=2190-5444&rft.eissn=2190-5444&rft_id=info:doi/10.1140/epjp/i2017-11427-7&rft_dat=%3Cproquest_cross%3E2920220538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920220538&rft_id=info:pmid/&rfr_iscdi=true |