Fast recommendation on bibliographic networks with sparse-matrix ordering and partitioning

Graphs and matrices are widely used in algorithms for social network analyses. Since the number of interactions is much less than the possible number of interactions, the graphs and matrices used in the analyses are usually sparse. In this paper, we propose an efficient implementation of a sparse-ma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Social network analysis and mining 2013-12, Vol.3 (4), p.1097-1111
Hauptverfasser: Küçüktunç, Onur, Kaya, Kamer, Saule, Erik, Çatalyürek, Ümit V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1111
container_issue 4
container_start_page 1097
container_title Social network analysis and mining
container_volume 3
creator Küçüktunç, Onur
Kaya, Kamer
Saule, Erik
Çatalyürek, Ümit V.
description Graphs and matrices are widely used in algorithms for social network analyses. Since the number of interactions is much less than the possible number of interactions, the graphs and matrices used in the analyses are usually sparse. In this paper, we propose an efficient implementation of a sparse-matrix computation which arises in our publicly available citation recommendation service the advisor as well as in many other recommendation systems. The recommendation algorithm uses a sparse matrix generated from the citation graph. We observed that the nonzero pattern of this matrix is highly irregular and the computation suffers from high number of cache misses. We propose techniques for storing the matrix in memory efficiently and we reduced the number of cache misses with ordering and partitioning. Experimental results show that our techniques are highly efficient in reducing the query processing time which is highly crucial for a web service.
doi_str_mv 10.1007/s13278-013-0106-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2920208759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2920208759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8038ae1efb521ff8a0c30bd8881c45c8da4d2cbdf9fce84af7bcc65a78fb38c33</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgqf0B3gKeVyfJfmSPUqwKBS968RKy2aRN7W7WJKXqrzfLip6EGWaYee8N8xC6JHBNAKqbQBiteAaEpYQy-zpBM8LLOivysj797Qs4R4sQdgAJxVgN5Qy9rmSI2Gvluk73rYzW9ThFY5u9dRsvh61VuNfx6PxbwEcbtzgM0geddTJ6-4Gdb7W3_QbLvsVpE-2okQYX6MzIfdCLnzpHL6u75-VDtn66f1zerjPFSBkzDoxLTbRpCkqM4RIUg6blnBOVF4q3Mm-palpTG6V5Lk3VKFUWsuKmYVwxNkdXk-7g3ftBhyh27uD7dFLQmgIFXhV1QpEJpbwLwWsjBm876T8FATG6KCYXRXJRjC6Kr8ShEycM44fa_yn_T_oGAvN4LA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2920208759</pqid></control><display><type>article</type><title>Fast recommendation on bibliographic networks with sparse-matrix ordering and partitioning</title><source>SpringerLink Journals - AutoHoldings</source><source>ProQuest Central</source><creator>Küçüktunç, Onur ; Kaya, Kamer ; Saule, Erik ; Çatalyürek, Ümit V.</creator><creatorcontrib>Küçüktunç, Onur ; Kaya, Kamer ; Saule, Erik ; Çatalyürek, Ümit V.</creatorcontrib><description>Graphs and matrices are widely used in algorithms for social network analyses. Since the number of interactions is much less than the possible number of interactions, the graphs and matrices used in the analyses are usually sparse. In this paper, we propose an efficient implementation of a sparse-matrix computation which arises in our publicly available citation recommendation service the advisor as well as in many other recommendation systems. The recommendation algorithm uses a sparse matrix generated from the citation graph. We observed that the nonzero pattern of this matrix is highly irregular and the computation suffers from high number of cache misses. We propose techniques for storing the matrix in memory efficiently and we reduced the number of cache misses with ordering and partitioning. Experimental results show that our techniques are highly efficient in reducing the query processing time which is highly crucial for a web service.</description><identifier>ISSN: 1869-5450</identifier><identifier>EISSN: 1869-5469</identifier><identifier>DOI: 10.1007/s13278-013-0106-z</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Algorithms ; Applications of Graph Theory and Complex Networks ; Bibliographic coupling ; Citation analysis ; Computation ; Computer Science ; Data Mining and Knowledge Discovery ; Economics ; Game Theory ; Graphs ; Humanities ; Law ; Matrices ; Methodology of the Social Sciences ; Network analysis ; Original Article ; Partitioning ; Query processing ; Recommender systems ; Social and Behav. Sciences ; Social network analysis ; Social networks ; Sparse matrices ; Sparsity ; Statistics for Social Sciences ; Web services</subject><ispartof>Social network analysis and mining, 2013-12, Vol.3 (4), p.1097-1111</ispartof><rights>Springer-Verlag Wien 2013</rights><rights>Springer-Verlag Wien 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8038ae1efb521ff8a0c30bd8881c45c8da4d2cbdf9fce84af7bcc65a78fb38c33</citedby><cites>FETCH-LOGICAL-c316t-8038ae1efb521ff8a0c30bd8881c45c8da4d2cbdf9fce84af7bcc65a78fb38c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13278-013-0106-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2920208759?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,41464,42533,43781,51294</link.rule.ids></links><search><creatorcontrib>Küçüktunç, Onur</creatorcontrib><creatorcontrib>Kaya, Kamer</creatorcontrib><creatorcontrib>Saule, Erik</creatorcontrib><creatorcontrib>Çatalyürek, Ümit V.</creatorcontrib><title>Fast recommendation on bibliographic networks with sparse-matrix ordering and partitioning</title><title>Social network analysis and mining</title><addtitle>Soc. Netw. Anal. Min</addtitle><description>Graphs and matrices are widely used in algorithms for social network analyses. Since the number of interactions is much less than the possible number of interactions, the graphs and matrices used in the analyses are usually sparse. In this paper, we propose an efficient implementation of a sparse-matrix computation which arises in our publicly available citation recommendation service the advisor as well as in many other recommendation systems. The recommendation algorithm uses a sparse matrix generated from the citation graph. We observed that the nonzero pattern of this matrix is highly irregular and the computation suffers from high number of cache misses. We propose techniques for storing the matrix in memory efficiently and we reduced the number of cache misses with ordering and partitioning. Experimental results show that our techniques are highly efficient in reducing the query processing time which is highly crucial for a web service.</description><subject>Algorithms</subject><subject>Applications of Graph Theory and Complex Networks</subject><subject>Bibliographic coupling</subject><subject>Citation analysis</subject><subject>Computation</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Economics</subject><subject>Game Theory</subject><subject>Graphs</subject><subject>Humanities</subject><subject>Law</subject><subject>Matrices</subject><subject>Methodology of the Social Sciences</subject><subject>Network analysis</subject><subject>Original Article</subject><subject>Partitioning</subject><subject>Query processing</subject><subject>Recommender systems</subject><subject>Social and Behav. Sciences</subject><subject>Social network analysis</subject><subject>Social networks</subject><subject>Sparse matrices</subject><subject>Sparsity</subject><subject>Statistics for Social Sciences</subject><subject>Web services</subject><issn>1869-5450</issn><issn>1869-5469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UE1LAzEQDaJgqf0B3gKeVyfJfmSPUqwKBS968RKy2aRN7W7WJKXqrzfLip6EGWaYee8N8xC6JHBNAKqbQBiteAaEpYQy-zpBM8LLOivysj797Qs4R4sQdgAJxVgN5Qy9rmSI2Gvluk73rYzW9ThFY5u9dRsvh61VuNfx6PxbwEcbtzgM0geddTJ6-4Gdb7W3_QbLvsVpE-2okQYX6MzIfdCLnzpHL6u75-VDtn66f1zerjPFSBkzDoxLTbRpCkqM4RIUg6blnBOVF4q3Mm-palpTG6V5Lk3VKFUWsuKmYVwxNkdXk-7g3ftBhyh27uD7dFLQmgIFXhV1QpEJpbwLwWsjBm876T8FATG6KCYXRXJRjC6Kr8ShEycM44fa_yn_T_oGAvN4LA</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Küçüktunç, Onur</creator><creator>Kaya, Kamer</creator><creator>Saule, Erik</creator><creator>Çatalyürek, Ümit V.</creator><general>Springer Vienna</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7XB</scope><scope>88J</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2R</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20131201</creationdate><title>Fast recommendation on bibliographic networks with sparse-matrix ordering and partitioning</title><author>Küçüktunç, Onur ; Kaya, Kamer ; Saule, Erik ; Çatalyürek, Ümit V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8038ae1efb521ff8a0c30bd8881c45c8da4d2cbdf9fce84af7bcc65a78fb38c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applications of Graph Theory and Complex Networks</topic><topic>Bibliographic coupling</topic><topic>Citation analysis</topic><topic>Computation</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Economics</topic><topic>Game Theory</topic><topic>Graphs</topic><topic>Humanities</topic><topic>Law</topic><topic>Matrices</topic><topic>Methodology of the Social Sciences</topic><topic>Network analysis</topic><topic>Original Article</topic><topic>Partitioning</topic><topic>Query processing</topic><topic>Recommender systems</topic><topic>Social and Behav. Sciences</topic><topic>Social network analysis</topic><topic>Social networks</topic><topic>Sparse matrices</topic><topic>Sparsity</topic><topic>Statistics for Social Sciences</topic><topic>Web services</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Küçüktunç, Onur</creatorcontrib><creatorcontrib>Kaya, Kamer</creatorcontrib><creatorcontrib>Saule, Erik</creatorcontrib><creatorcontrib>Çatalyürek, Ümit V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Social Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Social network analysis and mining</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Küçüktunç, Onur</au><au>Kaya, Kamer</au><au>Saule, Erik</au><au>Çatalyürek, Ümit V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast recommendation on bibliographic networks with sparse-matrix ordering and partitioning</atitle><jtitle>Social network analysis and mining</jtitle><stitle>Soc. Netw. Anal. Min</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>3</volume><issue>4</issue><spage>1097</spage><epage>1111</epage><pages>1097-1111</pages><issn>1869-5450</issn><eissn>1869-5469</eissn><abstract>Graphs and matrices are widely used in algorithms for social network analyses. Since the number of interactions is much less than the possible number of interactions, the graphs and matrices used in the analyses are usually sparse. In this paper, we propose an efficient implementation of a sparse-matrix computation which arises in our publicly available citation recommendation service the advisor as well as in many other recommendation systems. The recommendation algorithm uses a sparse matrix generated from the citation graph. We observed that the nonzero pattern of this matrix is highly irregular and the computation suffers from high number of cache misses. We propose techniques for storing the matrix in memory efficiently and we reduced the number of cache misses with ordering and partitioning. Experimental results show that our techniques are highly efficient in reducing the query processing time which is highly crucial for a web service.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s13278-013-0106-z</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1869-5450
ispartof Social network analysis and mining, 2013-12, Vol.3 (4), p.1097-1111
issn 1869-5450
1869-5469
language eng
recordid cdi_proquest_journals_2920208759
source SpringerLink Journals - AutoHoldings; ProQuest Central
subjects Algorithms
Applications of Graph Theory and Complex Networks
Bibliographic coupling
Citation analysis
Computation
Computer Science
Data Mining and Knowledge Discovery
Economics
Game Theory
Graphs
Humanities
Law
Matrices
Methodology of the Social Sciences
Network analysis
Original Article
Partitioning
Query processing
Recommender systems
Social and Behav. Sciences
Social network analysis
Social networks
Sparse matrices
Sparsity
Statistics for Social Sciences
Web services
title Fast recommendation on bibliographic networks with sparse-matrix ordering and partitioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A06%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20recommendation%20on%20bibliographic%20networks%20with%20sparse-matrix%20ordering%20and%20partitioning&rft.jtitle=Social%20network%20analysis%20and%20mining&rft.au=K%C3%BC%C3%A7%C3%BCktun%C3%A7,%20Onur&rft.date=2013-12-01&rft.volume=3&rft.issue=4&rft.spage=1097&rft.epage=1111&rft.pages=1097-1111&rft.issn=1869-5450&rft.eissn=1869-5469&rft_id=info:doi/10.1007/s13278-013-0106-z&rft_dat=%3Cproquest_cross%3E2920208759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2920208759&rft_id=info:pmid/&rfr_iscdi=true