Automatic Apnea Identification by Transformation of the Cepstral Domain

A new approach based on the transformation of the Cepstral domain is developed on this work. This approach reaches an automatic diagnosis for the syndrome of obstructive sleep apnea that includes a specific block for the removal of electrocardiogram (ECG) artifacts and the R wave detection. The syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive computation 2013-12, Vol.5 (4), p.558-565
Hauptverfasser: Travieso, Carlos M., Alonso, Jesús B., del Pozo-Baños, Marcos, Ticay-Rivas, Jaime R., Lopez-de-Ipiña, Karmele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new approach based on the transformation of the Cepstral domain is developed on this work. This approach reaches an automatic diagnosis for the syndrome of obstructive sleep apnea that includes a specific block for the removal of electrocardiogram (ECG) artifacts and the R wave detection. The system is modeled by a transformation of the Cepstral domain sequence using hidden Markov model (HMM). The final decision is done with two different approaches: one based on HMM as a classifier and a second one based on support vector machines classification and a parameterization based on the transformation of HMM by a kernel. The later approach reached results up to 99.23 %, using all test samples from Physionet Apnea-ECG Database.
ISSN:1866-9956
1866-9964
DOI:10.1007/s12559-012-9184-x